簡易檢索 / 詳目顯示

研究生: 張宏圖
Hung-Tu Chang
論文名稱: 球墨鑄鐵實施摩擦攪拌銲接之銲道微觀組織與機械性質研究
A study on the microstructure of weld nugget and mechanical properties of ductile iron jointed by friction stir welding
指導教授: 王朝正
Chaur-Jeng Wang
程金保
Chin-Pao Cheng
口試委員: 蘇程裕
Cherng-Yuh Su
雷添壽
Tien-Shou Lei
鄭慶民
Ching-Min Cheng
陳鈞
Chun Chen
王星豪
Shing-Hoa Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 117
中文關鍵詞: 摩擦攪拌銲接球墨鑄鐵
外文關鍵詞: friction stir welding, ductile iron
相關次數: 點閱:299下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    摩擦攪拌銲接是一項新的固態銲接技術,銲接過程藉由非消耗的攪拌桿作用於金屬板,由於主軸的旋轉及進給過程使金屬板產生嚴重的塑性變形,藉由熱機反應使金屬板達到接合效果。在整個銲接過程中銲接溫度始終低於熔點,所以在接合部位並未產生熔化現象,因此有變形少、品質高且成本低的特性。而母材球墨鑄鐵具有優良鑄造性、適當之機械性質以及制震能力佳,所以在許多工程結構件上已被廣泛使用。
    本研究首先以肥粒體基球墨鑄鐵實施摩擦攪拌銲對接,研究結果發現肥粒體基球墨鑄鐵經過FSW接合後,銲接區域由變形的石墨、麻田散體及動態再結晶的肥粒體組織所組成,在表層區及進給邊石墨形成條紋狀且產生明顯麻田散體相變態,退出邊則為維持單獨顆粒狀石墨,外圍為麻田散體所環繞,基地則大部分為動態再結晶的肥粒體。藉由微硬度試驗分析,銲道之麻田散體組織最高硬度值約為800 HV,並且發現麻田散體的碳原子源自於受攪拌作用而變形的石墨。
    接著以AISI-1008低碳鋼與肥粒體基球墨鑄鐵以摩擦攪拌銲搭接,並藉由拉剪強度試驗評估機械性質,當較高的主軸轉速1000 rpm,由40~70 mm/min的進給速度,皆可達到良好的銲接效果,依據光學顯微鏡及微硬度計所得數據,退出邊與進給邊的碳鋼與鑄鐵相鄰界面區域以波來鐵為主,但在退出邊附近球墨鑄鐵基地則觀察到麻田散鐵形成。在球墨鑄鐵之攪拌區中呈現顆粒狀之石墨,而基地則轉變為麻田散鐵組織。銲接後的試片呈現約8000 N高的拉剪強度值,並且破壞斷面位於低碳鋼母材。
    而AISI-1008低碳鋼與沃斯田體基球墨鑄鐵以摩擦攪拌銲搭接,結果顯示以1100 rpm-50 mm/min的銲接參數,可將材料接合共且銲道平整無變形,但拉剪強度值僅約900 N,並且下板銲核內的變形石墨呈條紋狀。隨後採用50 mm/min固定的進給速度,配合主軸轉速1200 rpm以上的摩擦攪拌後處理,可以獲得6000 N以上較佳的拉剪強度值。


    Abstract
    Friction stir welding (FSW) is a novel solid-state welding technology, which features a non-consumable rotating tool acting on metal plates. Because the spindle rotation and the feeding process cause severe plastic deformation in the stir zone of the metal plate, welding is achieved through thermo-mechanical reactions. During the entire welding process, the welding temperature remains lower than the melting point; thus, melting in the weld area does not occur, resulting in the development of weldments with low-deformability, high-quality, and low-cost characteristics. Ductile iron is widely applied in the field of mechanical engineering because, in addition to its affordability, it possesses outstanding formability, appropriate mechanical properties, and superior damping capacity.
    The objective of this study is to demonstrate the feasibility of friction stir butt-welding for joining of ferritic ductile iron by different welding parameter. According to the experimental results, the welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process.
    To resolve the poor weldability of ductile irons, this study employed AISI-1008 low-carbon steel as the top plate and ferritic ductile iron as the bottom plate and varied the rotational and traveling speeds to conduct a friction stir lap welding test. After welding, the weldments underwent microstructure analysis and hardness testing followed by a tensile shear test to evaluate the joint strength. At a high rotational speed above 1000 rpm combined with traveling speeds that ranged between 40 and 70 mm/min indicated the following: An excellent joining effect was achieved; the interfacial regions of the carbon steel and cast iron primarily comprised pearlite, although the vicinity of the retreating side and the stir zone matrices of ductile irons were composed of martensite structures; individual graphite granules were present; the tensile shear strength of the weldments was high; and the fracture portion was located in the low-carbon steel base metal.
    In order to explore the weldability of austenitic ductile iron, this study employed AISI-1008 low-carbon steel as the top plate and austenitic ductile iron as the bottom plate and varied the rotational speed to conduct a friction stir lap welding test. According to the experimental results of tensile shear stress test, at the welding condition of 1100 rpm-50 mm/min indicated the tensile shear stress value was about 900 N. In addition to conducing post-welding friction stir processing that combined traveling speed 50 mm/min with rotational speed between 1200 and 2100 rpm. Consequently a well joining effect elevated tensile shear stress value above 6000 N.

    目 錄 中文摘要.........................................................I 英文摘要........................................................II 誌謝........................................................... IV 目錄............................................................V 表目錄.........................................................IX 圖目錄..........................................................X 第一章 前言.....................................................1 第二章 文獻回顧.................................................3 2.1 摩擦攪拌銲接.........................................3 2.1.1 摩擦攪拌銲接之簡介與原理.............................3 2.1.2 摩擦攪拌銲接之製程..................................4 2.1.3 摩擦攪拌銲接銲道流動行為............................5 2.1.4 摩擦攪拌銲接之優點..................................9 2.1.5 摩擦攪拌銲接銲道橫截面區域之金相觀察................9 2.1.6 摩擦攪拌銲接可控制變化之主要參數....................12 2.2 球墨鑄鐵..............................................13 2.2.1 球墨鑄鐵的簡介.....................................13 2.2.2 肥粒體基球墨鑄鐵....................................15 2.2.3 沃斯田體基球墨鑄鐵..................................15 2.2.4球墨鑄鐵於高溫的行為................................18 2.2.5球墨鑄鐵之銲接特性..................................20 2.2.6球墨鑄鐵之再結晶行為................................22 2.3 碳鋼中麻田散體相變化..................................27 2.3.1 麻田散體變態溫度....................................28 2.3.2 麻田散體晶體結構...................................30 2.3.3麻田散體型態學......................................32 第三章 實驗方法................................................36 3.1 肥粒體基球墨鑄FSW對接實驗............................38 3.2 肥粒體基球墨鑄鐵與AISI-1008低碳鋼FSW搭接實驗.........41 3.3 沃斯田體基球墨鑄鐵與AISI-1008低碳鋼FSW搭接實驗.......44 3.4 分析設備與方法.......................................47 3.4.1 分析設備.........................................47 3.4.2 分析方法..........................................47 第四章 實驗結果..........................................49 4.1 肥粒體基球墨鑄鐵實施摩擦攪拌銲對接.................... 49 4.1.1 銲道表面巨觀檢測....................................49 4.1.2 銲道金相微觀結構....................................51 4.1.3 微硬度試驗結果......................................55 4.1.4 EPMA分析結果.....................................57 4.2 肥粒體基球墨鑄鐵與AISI-108 FSW搭接性質...............59 4.2.1 AISI-1008與球墨鑄鐵作FSW搭接...................59 4.2.1.1 銲道表面巨觀檢測...............................59 4.2.1.2 銲道金相微觀組織...............................61 4.2.1.3 微硬度試驗結果.................................68 4.2.1.4 拉剪強度試驗結果...............................71 4.2.2 改變主軸轉速對FSW搭接的影響....................75 4.2.2.1 銲道金相微觀組織...............................75 4.2.2.2 拉剪強度試驗..................................78 4.3 沃斯田體基球墨鑄鐵實施摩擦攪拌銲搭接.................. 79 4.3.1 表面巨觀組織觀察....................................81 4.3.2 銲道金相微觀組織....................................81 4.3.3 微硬度試驗結果......................................86 4.3.4 拉剪強度的結果......................................88 第五章 討論....................................................89 5.1 摩擦攪拌銲之銲接參數對球墨鑄鐵的影響.................. 89 5.1.1肥粒體基球墨鑄鐵摩擦攪拌銲對接......................89 5.1.2 肥粒體基球墨鑄鐵摩擦攪拌銲搭接......................89 5.1.3沃斯田體基球墨鑄鐵摩擦攪拌銲搭接...................90 5.2 麻田散體相變化........................................ 91 5.2.1碳原子擴散對麻田散體相變態的影響....................91 5.2.2 銲接參數對麻田散體相變態的影響.....................91 5.3 石墨型態.............................................. 96 5.3.1摩擦攪拌銲對接的石墨型態.......................96 5.3.2摩擦攪拌銲搭接的石墨型態.......................97 5.4 球墨鑄鐵FSW產生的再結晶現象........................ 101 5.5 搭接的破壞方式....................................... 103 5.5.1搭接臨界參數.................................103 5.5.2沃斯田體基球墨鑄鐵的破壞方式......................104 第六章 結論...................................................107 參考文獻.......................................................109 表目錄 表2-1各國訂定沃斯田體型低膨脹鑄鐵的各種規格................. 17 表3-1 肥粒體基球墨鑄鐵化學成份 (wt%)......................... 39 表3-2 攪拌棒各部位尺寸.......................................39 表3-3 以1008/α-DI製程,搭接母材化學成份表.................. 42 表3-4 以1008/γ-DI製程,搭接母材化學成份表.................. 45 表4-1由α-DI/α-DI製程,銲道攪拌區組織EPMA定量分析成份表..58 表4-2由1008/α-DI製程,銲接參數對微觀組織及銲道的影響......62 圖 目 錄 圖2-1 摩擦攪拌銲接製程之示意圖................................4 圖2-2 銲道進給邊與退出邊示意圖.................................6 圖2-3 摩擦攪拌銲接擠塑區的材料流動模型........................7 圖2-4 摩擦攪拌銲接擠塑區分佈..................................7 圖2-5 摩擦攪拌銲接橫截面材料流動模型..........................8 圖2-6 FSW銲道橫截面顯微結構示意圖...........................10 圖2-7 中碳鋼摩擦攪拌銲接橫截面微觀組織........................11 圖2-8 球墨鑄鐵與低碳鋼摩擦攪拌銲接橫截面及其產生的體積瑕疵.....11 圖 2-9 Fe-2.4%Si-C相圖......................................... 14 圖 2-10 球墨鑄鐵的連續冷卻變態曲線............................. 14 圖 2-11 沃斯田體基球墨鑄鐵微觀組織............................. 17 圖 2-12 碳在肥粒體中的溶解度.................................. 19 圖 2-13 球墨鑄鐵銲接入熱量與冷卻速率之關係..................... 21 圖 2-14 肥粒體基球墨鑄鐵FSW時,於銲道表層測得溫度曲線......... 21 圖 2-15 摩擦攪拌銲接鋁鋰合金的動態再結晶結構................... 24 圖 2-16 動態再結晶階段示意圖................................... 24 圖 2-17 不同矽含量砂模鑄造試片拉伸性質與溫度之依存性........... 25 圖 2-18 球墨鑄鐵在最高加熱溫度800 ℃之熱循環過程時肥粒體基地產生再結晶...26 圖 2-19 麻田散體體心立方晶體之八面體格隙位置................... 27 圖 2-20 麻田散體相隨著冷卻溫度下降之生長狀況...................29 圖 2-21 鐵碳合金中碳含量對麻田散體起始溫度及殘留沃斯田體相對量之影響....29 圖 2-22 碳含量對沃斯田體及麻田散體晶格常數之影響... ............31 圖 2-23 沃斯田體轉變為麻田散體的晶格對應.......................31 圖 2-24 兩種型態的麻田散體.....................................33 圖 2-25 鐵-碳麻田散體之碳含量與型態關係圖......................34 圖 2-26 鐵-碳麻田散體之硬度與碳含量函數關係圖..................35 圖 3-1 本研究之實驗流程........................................37 圖 3-2 球墨鑄鐵對接相關位置示意圖..............................40 圖 3-3 肥粒體基球墨鑄鐵FSW對接,母材的微觀組織................40 圖 3-4 摩擦攪拌銲搭接相關位置示意圖........................... 42 圖 3-5 肥粒體基球墨鑄鐵及AISI-1008材料微觀組織圖.............. 43 圖 3-6 拉剪強度所使用的試片規格................................ 43 圖 3-7 沃斯田體基球墨鑄鐵及AISI-1008低碳鋼材料微觀組織圖...... 43 圖 3-8 沃斯田體基球墨鑄鐵摩擦攪拌銲搭接之攪拌棒尺寸 ...... 46 圖 3-9 沃斯田體基球墨鑄鐵摩擦攪拌銲搭接之相關位置示意圖 .. 46 圖 4-1 由α-DI/α-DI製程,銲道區域的橫截面示意圖................. 50 圖 4-2 由α-DI/α-DI製程,銲道的巨觀組織圖....................... 53 圖 4-3 由α-DI/α-DI製程,銲道的局部區域微觀組織................. 53 圖 4-4 由α-DI/α-DI製程,銲道表層區的麻田散體組織............... 54 圖 4-5 由α-DI/α-DI製程,球墨鑄鐵在轉速1000 rpm進給率70 mm/min之微硬度曲線...56 圖 4-6 由α-DI/α-DI製程,銲道攪拌區組織EPMA分析區域........... 58 圖 4-7 由1008/α-DI製程,不同參數銲接後的銲道表面............... 60 圖 4-8 由1008/α-DI製程,銲核的巨觀組織及各部位圖示............ 60 圖 4-9 由1008/α-DI製程,銲接參數600 rpm-40 mm/min試片之巨觀及微觀組織....63 圖 4-10 由1008/α-DI製程,銲接參數600 rpm-70 mm/min試片之巨觀及微觀組織... 64 圖 4-11 由1008/α-DI製程,銲接參數1000 rpm-40 mm/min試片之巨觀及微觀組織...65 圖 4-12 由1008/α-DI製程,銲接參數1000 rpm-40 mm/min試片所拍攝的麻田散體及變形石墨微觀組織... 66 圖 4-13 由1008/α-DI製程,銲接參數1000 rpm-70 mm/min試片之巨觀及微觀組織...67 圖 4-14 由1008/α-DI製程,銲接參數600 rpm-70 mm/min試片之微硬度曲線.... 69 圖 4-15 由1008/α-DI製程,銲接參數1000 rpm-70 mm/min試片之微硬度曲線.....70 圖 4-16 由1008/α-DI製程,不同的主軸轉速搭配各種進給速度的試片拉剪強度...72 圖 4-17 由1008/α-DI製程,拉剪強度與伸長量曲線....................73 圖 4-18 由1008/α-DI製程,拉剪強度試驗試片破壞的型態............73 圖 4-19 由1008/α-DI製程的拉剪試驗中,銲接參數1000 rpm-70 mm/min試片破裂斷面的SEM地型比對及破裂斷面的EDX分析.......74 圖4-20 由1008/α-DI製程,銲接參數850 rpm-60 mm/min試片之巨觀及微觀組織... 76 圖4-21 由1008/α-DI製程,銲接參數1100 rpm-60 mm/min試片之巨觀及微觀組織... 77 圖4-22 由1008/α-DI製程,改變主軸轉速對拉剪強度的影響.......... 78 圖4-23 由1008/γ-DI製程,沃斯田體基球墨鑄鐵無摩擦攪拌後處理之拉剪強度... 80 圖4-24 由1008/γ-DI製程,銲道橫截面組織.......................... 82 圖4-25 由1008/γ-DI製程,銲接參數1100 rpm-50 mm/min試片之巨觀及微觀組織...83 圖4-26 由1008/γ-DI製程,摩擦攪拌後處理1600 rpm-50 mm/min試片之巨觀及微觀組織....84 圖4-27 由1008/γ-DI製程,銲道橫截面微觀組織.....................85 圖4-28 由1008/γ-DI製程,銲道微硬度分佈曲線.....................87 圖4-29 由1008/γ-DI製程,再經過摩擦攪拌後處理之拉剪強度值........88 圖5-1 由α-DI/α-DI製程,碳含量與石墨核距離關係圖................94 圖5-2 由α-DI/α-DI製程,銲道中麻田散體與石墨核及細肥粒體晶粒....95 圖5-3 由α-DI/α-DI製程,銲道的石墨型態...........................98 圖5-4 由α-DI/α-DI製程,銲道組織的石墨分佈型態...................98 圖5-5 不同銲接參數,由1008/α-DI製程的銲道石墨的分佈型態........99 圖5-6 由α-DI/α-DI製程,銲核出現微細晶粒的組織.................102 圖5-7 改變主軸轉速,1008/α-DI之拉剪強度值及臨界參數............105 圖5-8 臨界參數的試片,破壞的路徑...............................105 圖5-9 擦攪拌銲搭接實驗,1008/α-DI製程的銲核退出邊微觀組織…....106 圖5-10 拉剪強度試驗,1008/α-DI試片破壞的狀況....................106

    參考文獻

    [1] J. D. Mullins, Engineering Properties, Specifications and Physical Constants of Specific Ductile Irons, Ductile Iron Handbook, American Foundrymen’s Society, Inc., Des Plaines, Illinois, pp. 20-109 (1992).
    [2] R. C. Voigt and C. R. Loper, “A Study of Heat-Affected Zone Structures in Ductile Cast Iron,” Welding Journal, pp. 82-88 (1983).
    [3] C. P. Cheng, H. M. Lin, and J. C. Lin, “Friction Stir Welding of
    Ductile Iron and Low Carbon Steel,” Science and Technology of
    Welding and Joining, Vol. 15, pp. 706-711 (2010).OOOO OOOOOO
    [4] Y. K. Sawada and M. Nakamura, “Lapped Friction Stir Welding between Ductile Cast Irons and Stainless Steel,” Welding International, Vol. 27, pp. 121-128 (2013).
    [5] K. Shinagawa and S. Ku, Arc Welding of Specific Steels and Cast Irons, 4th Ed (2011).
    [6] R. Winiczenko, R. Salant, and M. Awtoniuk, “ Estimation of Tensile Strength of Ductile Irion Friction Welded Joints Using Hybrid Intelligent Methods,” Transactions of Nonferrous Metals Society of China, Vol. 23, pp. 385-391 (2013).
    [7] M. Gagne, S. Leclerc, S. Helgee, N. Stenbacka, and J. Tani, “Welding Ductile Iron to Steel: A Reality,” AFS Transactions, Vol. 114 (2006).
    [8] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-smith, and C. J. Dawes, International Patent Application No. PCT/GB92/02203.
    [9] Q. Yang, X. Li, K. Chen, and Y. J. Shi, “ Effect of Tool Geometry
    and Process Condition on Static Strength of A Magnesium Friction
    Stir Lap Linear Weld,” Materials Science and Engineering A, Vol. 528, pp. 2463-2478 (2011).OOOOOOOOOOOOOOOOOOOOOOOOOOOO
    [10] R. Nandan, G. G. Roy, and T. Debroy, “Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding,” Metallurgical and Materials Transactions A , Vol. 37, pp. 1247-1259 (2006).
    [11] R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, and K. Nogi, “Friction Stir Welding of Ultrafine Grained Plain Low-Carbon Steel Formed By the Martensite Process,” Materials Science and Engineering A, Vol. 423, pp. 324-330 (2006).
    [12] Y. S. Sato, H. Yamanoi, H. Kokawa, and T. Furuhara, “Microstructural Evolution of Ultrahigh Carbon Steel During Friction Stir Welding,” Scripta Materialia, Vol. 57, pp. 557-560 (2007).
    [13] Y. D. Chung, H. Fujii, K. Nakata, and K. Nogi, “Friction Stir Welding of High Carbon Tool Steel(SK85) below Eutectoid Temperature,” Transactions of JWRI, Vol. 38, pp. 37-41 (2009).
    [14] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, “Friction Stir Welding of Carbon Steel,” Materials Science and Engineering A, Vol. 429, pp. 50-57 (2006).
    [15] X. K. Zhu and Y. J. Chao, “Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304L Stainless Steel,” Journal of Materials Processing Technology, Vol. 146, pp. 263-272 (2004).
    [16] J. H. Cho, D. E. Boyce, and P. R. Dawson, “Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel,” Materials Science and Engineering A, Vol. 398, pp. 146-163 (2005).
    [17] T. W. Cheng, T. S. Lui, and L. H. Chen, “Microstructural Features and Erosion Wear Resistance of Friction Stir Surface Hardened Spheroidal Graphite Cast Iron,” Materials Transactions, Vol. 53, pp. 167-172 (2012).
    [18] J. Liao, N. Yamamoto, H. Liu, and K. Nakata, “ Microstructure at Friction Stir Lap Joint Interface of Pure Titanium and Steel,” Materials Letters, Vol. 64, pp. 2317-2320 (2010).
    [19] M. Ghosh, K. Kumar, and R. S. Mishra, “Friction Stir Lap Welding Advanced High Strength Steels: Microstructure and Mechanical Properties,” Materials Science and Engineering A, Vol. 528, pp. 8111-8119 (2011).
    [20] L. Dubourg, A. Merati, and M. Jahazi, “ Process Optimization and Mechanical Properties of Friction Stir Lap Welds of 7075-T6 Stringers on 2024-T3 Skin,” Materials and Design, Vol. 31, pp. 3324-3330 (2010).
    [21] E. Taban, J. E. Gould, and J. C. Lippold, “ Dissimilar Friction Welding of 6061-T6 Aluminum and AISI 1018 steel: Properties and Microstructural Characterization,” Materials and Design, Vol. 31, pp. 2305-2311 (2010).
    [22] M. Movahedi, A. H. Kokabi, S. M. Seyed Reihani, W. J. Cheng, and C. J. Wang, “Effect of Annealing Treatment on Joint Strength of Aluminum/Steel Friction Stir Lap Weld,” Materials and Design, Vol. 44, pp. 487-492 (2013).
    [23] 黃振賢,機械材料,文京圖書有限公司,台北,第140-145頁 (1999)。
    [24] H. T. Chang, C. J. Wang, and C. P Cheng, “Friction Stir Lap Welded Low Carbon Steel and Ductile Iron: Microstructure and Mechanical Properties,” Science and Technology of Welding and Joining, Vol. 18, pp. 688-696 (2013).
    [25] Y. F Sun, Y. Konishi, M. Kamai, and H. Fujii, “Microstructure and Mechanical Properties of S45C Steel Prepare by Laser-assisted Friction Stir Welding,” Materials and Design, Vol. 47, pp. 842-849 (2013).
    [26] A. K. Lakshminarayanan and V. Balasubramanian, “ An Assessment of Microstructure, Hardness, Tensile and Impact Strength of Friction Stir Welded Ferritic Stainless Steel Joints,” Materials and Design, Vol. 31, pp. 4592-4600 (2010).
    [27] R. S. Mishra and Z. Y. Ma, “Friction Stir Welding and Processing,” Materials Science and Engineering R , Vol. 50, pp. 1-78 (2005).
    [28] C. J. Dawes, E. J. R. Spring, and D. G. Staines, “Friction Stir Welding Aluminum Alloys 5083 - Increased Welding Speed,” TWI Report, (1999).
    [29] M. Guerra, C. Schmidt, J. C. McClure, L. E. McClurea, and A. C. Nunesb, “Flow Patterns During Friction Stir Welding,” Material Characterization, Vol. 49, pp. 95-101 (2003).
    [30] W. B. Lee, Y. M. Yeon, and S. B. Jung, “The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy,” Scripta Materialia Vol. 49, pp. 423 (2003).
    [31] L. Karlsson, E. L. Bergqvist, and H. Larsson, “Application of Friction Stir Welding to Dissimilar Welding,” Welding in The World, Vol. 46, pp. 10-14 ( 2002).
    [32] Mr. William J. Arbegast, “Modeling Friction Stir Joining as a Metalworking Process,” Published in Hot Deformation of Aluminum Alloys III, Z. Jin, TMS (2003).
    [33] P. S. Pao, S. J. Gill, C. R. Feng, and K. K. Sankaran, “ Corrosion-Fatigue Crack Growth in Friction Stir Welded Al 7050,” Scripta Materialia, Vol. 45, pp. 605-612 (2001).
    [34] 田潮訓,程金保,呂傳盛,「AA2091鋁鋰合金摩擦攪拌銲接接合性質之研究」,中華民國銲接協會論文發表會 (2003)。
    [35] K. V. Jata and S. L. Semiatin, “ Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys,” Scripta Materialia, Vol. 43, pp. 743-749 (2000).
    [36] K. V. Jata, K. K. Sankaran, and J. J. Ruschau, “ Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451,” Metallurgical and Materials Transactions A, Vol. 31, pp. 2181-2192 (2000).
    [37] A. K Lakshminarayanan, V. Balasubramanian, and M. Salahuddin, “Microstructure Tensile and Impact Toughness Properties of Friction Stir Welded Mild Steel,” Journal of Iron and Steel Research, Vol. 17, pp. 68-74 (2010).
    [38] W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “Feasibility of Friction Stir Wilding Steel,” Science and Technology of Welding and Joining, Vol. 4, pp. 365 (1999).
    [39] 林彰棋,「鐵-碳系合金摩擦攪拌接合微觀組織演變及接合性質研究」,碩士論文,國立臺灣師範大學,台北 (2005)。
    [40] O. Frigaard, O. grong, and O. T. Midling, “ A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys,” Metallurgical Materials Transactions A, Vol. 32, pp. 1189-1200 (2001).
    [41] M. Ghosh, K. Kumar, and R. S. Mishra, “Friction Stir Lap Welded Advanced High Strength Steels: Microstructure and mechanical properties,” Materials Science and Engineering A, Vol. 528, pp. 8111-8119 (2011).
    [42] Michael F. Burditt, Ductile Iron Handbook, American Foundrymen’s Society, Inc., Des Plaines, Illinois, pp. 1-2 (1992).
    [43] 程金保,「肥粒體基球墨鑄鐵共析變態溫度附近以下之熱疲勞龜裂性質探討」,博士論文,國立成功大學,台南 (1999)。
    [44] 陳正中,「沃斯回火球墨鑄鐵疲勞性質之研究」,碩士論文,國立台灣師範大學,台北 (2003)。
    [45] 林宏茂,「肥粒體基球墨鑄鐵熱循環誘發沿晶脆性破壞之探討」,碩士論文,國立成功大學,台南 (2004)。
    [46] J. R. Davis, ASM Specialty Handbook: Cast Iron, ASM International, (1996).
    [47] 羅俊祥,「化學組成及熱處理對低熱膨脹鑄鐵之性能影響研究」,碩士論文,國立台灣大學,台北 (2001)。
    [48] 林良清,「低熱膨脹合金鑄鐵之最新發展」,鑄造月刋,第145期,第6-10頁 (2001)。
    [49] 翁林昭,「超低熱膨脹合金鑄鐵之研製及其耐熱震研究」,碩士論文,大同工學院,台北 (1990)。
    [50] I. Karsay and R. D. Schelleng, “Nickel Alloyed Austenitic Ductile Iron Graphitic Structure,” AFS Transaction. Vol. 69, pp. 725-730 (1961)
    [51] 陳翔斌, 「冶金參數對低熱膨脹鑄鐵之性質影響研究」,碩士論文,國立台灣大學 (1991)。
    [52] R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3th Ed., (1992).
    [53] P. P. Rao and S. K. Putatunda, “ Influence of Microstructure on Fracture Toughness of Austempered Ductile Iron,” Metallurgy Materials Transaction A, Vol. 28, pp. 1457-1470 (1997).
    [54] P. P. Rao and S. L. Putatunda, “ Investigations on Fracture Toughness of Austempered Ductile Irons Austenitized at Different Temperatures,” Materials Science and Engineering A, Vol. 349, pp. 136-149 (2003).
    [55] O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, and M. T. Jovanovic, “ Microstructure and Toughness of CuNiMo Austempered Ductile Iron,” Materials Letters, Vol. 58, pp. 2707-2711 (2004).
    [56] Fujii H, Yamaguchi Y, Kiguchi S, and Nogi K. “ Surface Hardening of Cast Irons by Friction Stir Processing ,” Materials Transactions, Vol. 49, pp. 2837-2843 (2008).
    [57] Imagawa K, Fujii H, Morisada Y, Yamaguchi Y, and Kiguchi S. “ Surface Hardening of Ferritic Spheroidal Graphite Cast Iron by Friction Stir Processing,” Materials Transactions, Vol. 53, pp. 1456-1460 (2012).
    [58] Imagawa K, Fujii H, Morisada Y, Yamaguchi Y, and Kiguchi S, “ Effects of Tool Geometry on Hardened Layer of Friction Stir Processed Cast Iron,” Materials Transactions, Vol. 53, pp. 1952-1955 (2012).
    [59] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd. (1995)
    [60] 陳文照,曾春風,游信和,材料科學工程,高立圖書有限公司,台北 (1999)。
    [61] C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling, and C.C. Bampton, “Effects of Friction Stir Welding on Microstructure of 7075 Aluminum,” Scripta Materialia, Vol. 36, pp. 69-75 (1997).
    [62] 陳思達,「摩擦攪拌銲接對Al-Cu系2218合金微觀組織變化之效應」,碩士論文,國立成功大學,台南 (2004)。
    [63] 張榮洲,「抽線道次對銅伸線機械性質的影響」,碩士論文,國立成功大學,台南 (2004)。
    [64] 李信委,「AZ31B鎂合金室溫至500℃之拉伸性質與其變形組織探討」,碩士論文,國立成功大學,台南 (2002)。
    [65] G. Liu, L. E. Murr, C. S. Niou, J. C. McClure, and F. R. Vega, “Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum,” Scripta Materialia, Vol. 37, pp. 355-361 (1997).
    [66] R. Kaibyshev, O. Sitdikov, A. Goloborodko, and T. Sakai, “ Grain Refinement in As-Cast 7475 Aluminum Alloy under Hot Deformation,” Materials Science and Engineering A, Vol. 344, pp. 348-356 (2003).
    [67] C. P. Cheng, T. S. Lui, and L. H. Chen, “A Study of the 500℃ to 900℃ Tensile Deformation Behavior of Spheroidal Graphite Cast Iron,” Cast Metals, Vol. 8, pp. 211-216 (1995).
    [68] C. P. Cheng, T. S. Lui, and L. H. Chen, “ Effect of Heating Temperature and Magnesium Content on Thermal Cyclic Failure Behavior of Ductile Irons,” Materials Science and Technology, Vol. 20, pp. 243-250 (2004).
    [69] H. K. D. H Bhadeshia, “Worked Examples in The Geometry of Crystals,” The Institute of Metals, pp. 56 (1987).
    [70] G. Krauss, STEELS: Heat Treatment and Processing Principles, pp. 351 (1990).
    [71] R. W. K Honeycombe and H. K. D. H Bhadeshia, STEELS: Microstructure and Properties 2th Ed., pp. 38 (1995).
    [72] M. Cohen, “ The Strengthening of Steel,” Transactions of TMS-AIME, Vol. 224, pp. 638-657 (1962).
    [73] D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, pp. 384-385 (1992).
    [74] 王旨玄,「板片麻田散鐵及沃斯田鐵在440C合金鋼之回火相變態研究」,碩士論文,國立台灣大學,台北 (2002)。
    [75] Y. Tomota, H. Tokuda, S. Torii, and T. Kamiyama, “Axial Ratio of An Fe-30Ni-0.23C BCT Martensite Determined by Neutron Diffraction,” Materials Science and Engineering A, Vol. 434, pp. 82-87 (2006).
    [76] Bain, E. C., “The nature of martensite,” Transactions of AIME, Vol. 70, pp. 25-46 (1924).
    [77] B. Sonderegger, S. Mitsche, and H. Cerjak, “Martensite Laths in Creep Resistant Martensitic 9-12% Cr Steels Caculation and Measurement of Misorientions,“ Materials Characterization, Vol. 58, pp. 874-882 (2007).
    [78] G. Krauss, “Martensite in steel: Strength and Structure,” Materials Science and Engineering A, pp. 40-57 (1999).
    [79] A. R Marder and G. Krauss, “The Morphology of Martensite in Iron-Carbon Alloys,” Transactions of ASM, pp. 651 (1967).
    [80] G. Krauss, “ Hardenability Concepts with Applications to Steel,” AIME, pp. 229 (1978).
    [81] J. Shi, M. A. Savas, and R. W. Smith, “Plastic Deformation of A Model Material Containing Soft Spheroidal Inclusion: Spheroidal Graphite Cast Iron,” Journal of Materials Process and Technology, Vol. 133 pp. 297-303 (2003).
    [82] Y. D. Chung, H. Fujii, R. Ueji, and N. Tsuji, “Friction Stir Welding of High Carbon Steel with Excellent Toughness and Ductile, “Scripta Materialia, Vol. 63, pp. 223-226 (2010).
    [83] R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, and K. Nogi, “Friction Stir Welding of Ultrafine Grained Plain Low-carbon Steel Formed by The Martensite Process,” Materials Science and Engineering A, Vol. 423, pp. 324-330 (2006).

    QR CODE