簡易檢索 / 詳目顯示

研究生: 梁慈玉
Cih Yu Liang
論文名稱: 高矽含鉬鑄鐵熱浸鋁及其高溫氧化後之顯微結構
Effect of the Microstructure on Hot-dip Aluminizing of High Silicon Ductile Irons Alloyed With Molybdenum After High Temperature Oxidation
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 雷添壽
Tien-Shou Lei
鄭偉鈞
Wei-Chun Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 高矽含鉬鑄鐵熱浸鍍鋁富矽層碳化鉬
外文關鍵詞: High silicon ductile irons alloyed with molybden, Hot dip Al, Si pile-up layers, Molybdenum carbide
相關次數: 點閱:239下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用高矽含鉬球墨鑄鐵於700 C進行熱浸鍍純鋁,觀察矽和富鉬碳化物對外鋁層和鐵鋁介金屬層成長的影響。熱浸鍍後之高矽含鉬鑄鐵再於750 C進行高溫氧化試驗,探討矽和富鉬碳化物對高溫氧化時鐵鋁交互擴散過程的影響。
    實驗結果顯示,熱浸鋁後試片之塗層由外而內分別為外鋁層、鐵鋁介金屬層(外側的FeAl3 + 內側的Fe2Al5)與夾雜在鐵鋁介金屬層和底材間的富矽層。隨著熱浸時間增加,富鉬碳化物會以碳化物型式存在外鋁層中,碳化鉬含量亦會增加;鐵鋁介金屬層向底材方向成長,矽以顆粒狀留在外鋁層中。高矽含鉬球墨鑄鐵熱浸純鋁後高溫氧化,由於石墨氧化,造成孔洞與縫隙,但碳化鉬於高溫氧化時仍存在於鐵鋁介金屬層中,且能阻礙孔洞與縫隙的延伸。


    In this experiment, high silicon ductile irons alloyed with molybdenum was coated by hot-dipping into a pure aluminum bath at 700 C. The effect of silicon and molybdenum-rich carbides in the steel substrate on the formation of aluminum layer and external aluminum layer on high silicon ductile irons alloyed with molybdenum was studied. High-temperature oxidation of the hot-dipped specimens was also performed in order to understand the effect of silicon and molybdenum-rich carbides in the steel substrate on the growth of the Fe-Al intermetallic layer. The results showed that the coating layer consisted of three layers, in the sequence of Al, Fe-Al intermetallic and Si pile-up layers from the external topcoat to the substrate. The molybdenum carbide in the steel substrate can be observed in the aluminum layer after hot-dipping. As the hot-dipping time increased, the amount of molybdenum carbide in the aluminum layer increased and the silicon pile-up at the interface between the intermetallic layer and substrate transformed into silicon particles in the aluminum layer. In the high-temperature oxidation test, Graphite scattered in the aluminum layer was oxidized, leaving cracks and pores in the aluminized layer for oxygen to penetrate inward. However, the molybdenum carbide impeded the growths of cracks and pores.

    第一章 前言………………………...…………………………...………1 第二章 文獻回顧………………………………...…...…………...…….3 2.1 熱浸鍍鋁……………………………………………………..…….3 2.1.1 目的與原理………………………………………………...….3 2.1.2 熱浸後鋁層之成長………………………………………....4 2.1.3 熱浸後擴散之鋁化層的變化……………………….……6 2.1.4 Fe2Al5相…………………………………………………....10 2.1.5 富矽層………………………………………….. ……….…12 2.2 金屬高溫氧化………………………………………. ……….....13 2.2.1 氧化機制……………………………………………. ……...13 2.2.2 鐵的氧化物…………………...…………………………….15 2.2.3 鑄鐵高溫氧化……………………………………. ………..17 2.2.4 高矽鑄鐵之高溫氧化……………………………. ………..18 2.3 合金元素對鑄鐵之影響………………………………. ……….20 2.3.1 片墨/球墨鑄鐵之特性……………………………………….20 2.3.2矽元素………………………………………………………..22 2.3.3 鉬元素………………………………………………………25 第三章 實驗方法……………………………………………………..28 3.1 實驗材料與試片製備…………………………………….....…30 3.2 熱浸鍍鋁製程…………………………….. …….………….…31 3.3 高溫空氣恆溫氧化試驗…………………………... ……….…33 3.4 分析方法與設備…………………………………... ……….…34 3.4.1 分析方法………………………………………………..…34 3.4.2 分析設備………………………………………………..…36 第四章 實驗結果與討論……………………………….. ………...…37 4.1 高矽含鉬球墨鑄鐵熱浸鍍鋁試驗………………... ………...…37 4.1.1 鑄鐵底材之金相顯微結構…………………………………..37 4.1.2 鋁化層與富矽層之微結構與組成相…………..……………41 4.1.3 鑄鐵於不同時間浸鋁後之微結構分析………..……………48 4.2 球墨鑄鐵原材/熱浸後之高溫氧化…………. …………………62 4.2.1 鑄鐵恆溫氧化動力學與顯微結構………. …………………62 4.2.2 鑄鐵熱浸後恆溫氧化動力學與顯微結構.. ……………...…77 第五章 結論……………………………………...………………..…...93 參考文獻…. ………………………………………………………..…..95   圖 目 錄 圖2-1 Fe-Al平衡相圖………………..……………………….……….5 圖2-2 碳鋼熱浸鋁後擴散處理的形貌,圖中A為Al,B為Fe2Al5……………………………………………………………7 圖2-3 碳鋼熱浸鋁後擴散處理的截面形貌,圖中A為Fe2Al5,B為 FeAl3,C為Fe3Al……………….………………………….……7 圖2-4 5Cr-0.5Mo鋼熱浸鋁後高溫擴散之相變化過程………………8 圖2-5 碳鋼熱浸鋁的相變化過程……………………………...……...9 圖2-6 Fe2Al5形貌與時間關係……………………………………….11 圖2-7 Fe2Al5之晶體結構……………………..………………...........11 圖2-8 高矽球墨鑄鐵於700 ℃熱浸鋁湯中120秒後(a) 截面之BEI 影像圖和(b) 矽的元素分布圖…………..……………….…..12 圖2-9 純鐵氧化層結構………………………..……………………..16 圖2-10 高矽球墨鑄鐵晶750 C高溫氧化72 hr後,(a) BEI之截面圖和(b) BEI截面之Fe2SiO4與Fe3O4放大圖………………..19 圖2-11 兩種不同矽含量之鐵碳平衡相圖…………………..………23 圖2-12 矽含量對鐵碳平衡圖中沃斯田鐵區的影響……..…..….….24 圖2-13 矽含量對球墨鑄鐵高溫抗氧化性的影響………...…..…….24 圖2-14 固定鉬含量之鐵碳平衡圖…………………………........…..27 圖3-1 本研究之實驗流程圖………………………………...…..…...29 圖3-2 本研究所採用之熱浸鍍鋁設備…………………………....…32 圖4-1 Si-Mo球墨鑄鐵基地中富鉬碳化物局部放大之SEM照片…38 圖4-2 Si-Mo球墨鑄鐵基地中富鉬碳化物定點定量分析結果…......39 圖4-3 Si-Mo球墨鑄鐵基地中富鉬碳化物局部放大之SEM照片…40 圖4-4 Si-Mo球墨鑄鐵於700 C熱浸純鋁120秒鐘後整體鋁塗層及積矽層的截面BEI影像……..………………………………...43 圖4-5 Si-Mo球墨鑄鐵於700 C熱浸純鋁120秒鐘後之鐵鋁介金屬層與富矽層截面BEI影像……...………...………………...…44 圖4-6 Si-Mo球墨鑄鐵於700 C熱浸純鋁10分鐘後之截面BEI影像………………...……………………………..……………...45 圖4-7 Si-Mo球墨鑄鐵於700 C熱浸純鋁120秒鐘後鐵鋁介金屬層不連續貌之截面BEI影像……………………………...……..45 圖4-8 Si-Mo球墨鑄鐵於700 C熱浸純鋁120秒鐘後,富矽層之定點定量分析結果………....……………………………………46 圖4-9 Si-Mo球墨鑄鐵於700 C熱浸純鋁120秒鐘試驗,以Mapping 方析顯微組織,(a)球墨鑄鐵熱浸鋁後之截面BEI影響和(b)矽元 素分布…………………………………….…………….47 圖4-10 Si-Mo球墨鑄鐵經700 C熱浸純鋁(a) 5秒、(b) 30秒、(c) 60秒、(d) 120秒、(e) 180秒和(f) 360秒後之BEI橫截面圖…….52 圖4-11 Si-Mo球墨鑄鐵經700 C熱浸純鋁之鋁塗層(a) 5分鐘、(b) 10 分鐘、(c) 15分鐘和(d) 20分鐘後之BEI橫截面圖…………...53 圖4-12 Si-Mo球墨鑄鐵經700 C熱浸純鋁20分鐘後同一截面位置的 (a) BEI和(b) SEI之橫截面圖…………………………………53 圖4-13 Si-Mo球墨鑄鐵經700 C熱浸純鋁之介金屬層(a) 5分鐘、(b) 10分鐘、(c) 15分鐘和(d) 20分鐘後BEI之橫截面…....…..…54 圖4-14 Si-Mo球墨鑄鐵熱浸鋁5 min後之BEI橫截面圖…….....……55圖4-15 Si-Mo球墨鑄鐵經熱浸700 C純鋁中5分鐘試驗以Mapping 分析熱浸鋁後顯微組織,(a)Si-Mo球墨鑄鐵氧化層之BEI影 像,(b)矽元素分布圖………………………………….....……55 圖4-16 Si-Mo球墨鑄鐵經熱浸700 C純鋁中15分鐘試驗以Mapping 分析熱浸鋁後顯微組織,(a)Si-Mo球墨鑄鐵氧化層之BEI影 像,(b)矽元素分布圖………………………………..……...…56 圖4-17 Si-Mo球墨鑄鐵經熱浸700 C純鋁中120秒鐘試驗以Mapping 分析熱浸鋁後顯微組織,(a)Si-Mo球墨鑄鐵氧化層之BEI影 像,(b)矽元素分布圖…………………………………...……..57 圖4-18 Si-Mo球墨鑄鐵經700 C熱浸純鋁(a) 5分鐘、(b) 10分鐘、(c) 15分鐘和(d) 20分鐘後BEI之橫截面圖……………..………57 圖4-19 Si-Mo球墨鑄鐵經700 C熱浸純鋁20分鐘後之BEI橫截面圖…..…………………………...………………...………..…58 圖4-20 Si-Mo球墨鑄鐵熱浸純鋁15分鐘之鋁層截面BEI影像與其定 點定量分析...………………………………………...........…..59 圖4-21 Si-Mo球墨鑄鐵熱浸鋁湯中120秒鐘後(a) 高矽球墨鑄鐵(2.55 wt.% Si)和(b) Si-Mo球墨鑄鐵的外鋁層厚度………….…….60 圖4-22 Si-Mo球墨鑄鐵熱浸鋁不同時間後之機制示意圖……….......61 圖4-23 (a) Si-Mo球墨鑄鐵與(b) 高矽球墨鑄鐵在750 C氧化增重溫度與時間關係…………………………………...…….............66 圖4-24 Si-Mo球墨鑄鐵原材經750 C,4h氧化試驗之氧化層生成形 貌(OM圖),(a) 氧化層顯微組織,氧化層組成相由外而內分 別為Fe2O3、Fe3O4與FeO和(b) 經高溫氧化試驗後,鑄鐵材 料表面逐層研磨之XRD分析結果………………………...…67 圖4-25 Si-Mo鑄鐵原材經750 C高溫氧化(a) 4 hr,(b) 24 hr,(c) 48 hr ,(d) 96 hr和(e) 192 hr後之金相圖.…………………..………68 圖4-26 Si-Mo鑄鐵原材經750 C高溫氧化96 hr後之金相圖……………………………………………...……….……..69 圖4-27 Si-Mo球墨鑄鐵經過750 C,4h氧化試驗以mapping分析氧 化層顯微組織與元素分布,(a) 鑄鐵氧化層之BEI影像,(b) 矽 元素,(c) 鉬元素和(d) 鐵元素分布圖………….………..…..70 圖4-28 Si-Mo球墨鑄鐵經750 C高溫氧化96 h之截面BEI影響與期定點定量分析結果…...……………………………….……....71 圖4-29 經750 C氧化24 h 後(a) Si-Mo球墨鑄鐵與(b) 高矽球墨鑄鐵(2.55 wt.%)之金相圖……..………………………...........…72 圖4-30 Si-Mo球墨鑄鐵經750 C高溫氧化96 h試驗以Mapping分析 顯微組織,(a) Si-Mo球墨鑄鐵氧化層之截面BEI影像與(b) 矽 元素分布圖…………………………………………….…...…72 圖4-31 Si-Mo球墨鑄鐵經750 C高溫氧化96 h試驗以氧化層線掃瞄 (a) Si-Mo球墨鑄鐵氧化層之截面BEI影像與(b) 鐵元素、(c) (b) 矽元素與(d) 氧元素………………………………………73 圖3-32 高矽鑄鐵(2.60 wt.% Si)在700 C高溫氧化96 h後之氧化層內 層EDS分析…………………………………………..………..74 圖4-33 Si-Mo球墨鑄鐵熱經750 C高溫氧化96 h後之氧化層內層 EDS分析……………………………………….………..…….75 圖4-34 Si-Mo球墨鑄鐵經高溫氧化後之機制示意圖……...…………76 圖4-35 (a)Si-Mo球墨鑄鐵與(b) 高矽球墨鑄鐵[58]浸純鋁後經750 C氧化增重溫度與時間關係…………………………...…….....81 圖4-36 Si-Mo鑄鐵原材熱浸鋁後經750 C高溫氧化(a) 4 hr,(b) 24 hr ,(c) 48 hr,(d) 96 hr和(e) 192 hr後之BEI影像圖……....……82 圖4-37 低碳鋼熱浸鍍鋁的相變化過程……………………...…….…83 圖4-38 Si-Mo球墨鑄鐵熱浸純鋁後經750 C 高溫氧化(a) 4 hr和(b) 48hr後之截面BEI影像與其定點定量分析結果……...…..…84 圖4-39 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C,(a) 4 h氧化和(b)48 h氧化後之BEI影像圖與富矽層中定點定量分析結果…….....85 圖4-40 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C氧化4 h試驗後,(a) 氧化層之BEI影像,(b)矽元素,(c)鉬元素,(d)鋁元素和(e) 鐵元素分布圖………………………………….………….…..86 圖4-44 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C氧化4 h試驗後,(a) 氧化層之BEI影像,(b)矽元素,(c)鋁元素,(d)鐵元素和(e) 鉬元素分布圖…………………………………….…………...87 圖4-45 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C,48h氧化試驗以 EPMA分析氧化層顯微組織與元素分布,(a) 鑄鐵氧化層之 BEI影像,(b) 鋁元素,(c) 鐵元素,(d) 氧元素,(e) 鉬元素, (f) 矽元素和(g) 碳元素分布圖…………………….….…….88 圖4-43 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C氧化48 h試驗後氧化 層之BEI影像與定點定量分析………………………..….…..89 圖4-44 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C高溫氧化96 h試驗, (a) 氧化層之BEI影像圖和(b)氧化層中碳化鉬放大之BEI影 像圖與定點定量分析………………………………………....90 圖4-45 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C,4h氧化試驗以 Mapping分析氧化層顯微組織,(a) 鑄鐵氧化層之BEI影像和 (b) 鉬元素………………………………………….............…91 圖4-46 Si-Mo球墨鑄鐵熱浸純鋁後經過750 C,4h氧化試驗以 Mapping分析氧化層顯微組織,(a) 鑄鐵氧化層之BEI影像和 (b) 鉬元素…………………………………………..…….…..91 圖4-47 Si-Mo球墨鑄鐵熱浸純鋁後高溫氧化之機制示意圖…..…….92   表 目 錄 表2-1 Fe-Al化合物性質…………..………………………………..…5 表2-2 在1000 C以下時,各離子在氧化物中的擴散係數……..…..19 表3-1 本研究使用的合金之化學成分(wt.%).. …………………..…30 表4-1 Si-Mo球墨鑄鐵熱浸純鋁不同時間後,介金屬層與富矽層之平均厚度與標差………………..…………………...………...48

    [1] C. Labrecque and M. Gagne, Canadian Metallurgical Quarterly 37 (1988) 343.
    [2] P. Curcio, B. Kerezsi, P. Brown, Eng. Fail. Anal. 11 (2004) 925.
    [3] C. Labrecque and M. Gagne, Can. Metall. Quart 37 (1988) 343.
    [4] G. S. Cho, K.H. Choe, K. W. Lee, A. Ikenaga, Mater. Sci. Technol. 23 (2007) 97.
    [5] A. R. Ghageri, M. Nili Ahmadabadi, H.M. Ghasemi, Wear 225 (2003) 410.
    [6] M. Hatate, T. Shoita, N. Takahashi, K. Shimizu, Wear 251 (2001) 885.
    [7] Y. Zhang, Y. Chen, R. He, B. Shen, Wear 166 (1993) 179.
    [8] N. Birks and G. H. Meier, “Introduction to high temperature oxidation of metals,” Edwar Amold Ltd, p. 73, 1983.
    [9] Park, “Development of a heat resistant cast iron alloy for engine exhaust manifolds,” SAE 2005.
    [10] R. Sivakumar and Janar Rao, Oxid. Met. 17 (1982) 391.
    [11] G. A. Capuano, A. Dang, U. Bernabai, and F. Felli, Oxid. Met. 39 (1993) 263.
    [12] T. Zhang and L. Dy, Mater. Sci. Eng. A277 (2008) 18.
    [13] C. J. Wang and C. C. Li, Surf. Coat. Technol. 177 ~ 178 (2003) 37.
    [14] C. C. Tsaur, J. C. Rock, and Y. Y. Chang, Master. Chem. Phys.91 (2005).
    [15] T. C. Simpson, Corrosion 49 (1993) 550.
    [16] G. W. Goward, Surf. Coat. Technol. 108 ~ 109 (1998) 73.
    [17] A. L. Purvis and B. M. Warnes, Surf. Coat. Technol. 146 ~ 147 (2001) 1.
    [18] F. Barbier, D. Manuelli, and K. Bouche, Script. Master. 36 (1997) 425.
    [19] A. Aguero, F.J. Garcia de Blas, M.C. Garcia, R. Muelas and A. Roman, Surf. Coat. Technol. 146 ~ 147 (2001) 578.
    [20] Y. Zhang, B.A. Pint, K.M. Cooley and J.A. Haynes, Surf. Coat. Technol. 200 (2005) 1231.
    [21] H.C. Akuezue and D.P. Whittle, Met. Sci. 17 (1983) 27.
    [22] R. Sivakumar and E.J. Rao, Oxid. Met. 17 (1982) 391.
    [23] C. Houngninou, S. Chevalier and J.P. Larpin, Appl. Surf. Sci. 236 (2004) 256.
    [24] W.T. Tsai and K.E. Huang, Thin Solid Films 366 (2000) 164.
    [25] S. Kobayashi and T. Yakou, Master. Sci. Eng. A 338 (2002) 44.
    [26] T. Sasaki and T. Yakou, Surf. Coat. Technol. 201 (2006) 2131.
    [27] H. Glasbrennerand J. Konys, Fusion Eng. Des. 58 ~ 59 (2001) 725.
    [28] L. Yajiang, W. Juan, Z. Yonglan and X. Holly, Bull. Mater. Sci. 25 (2002) 635.
    [29] R.W. Richards, R.D. Jones, P.D. Clements and H. Clarke, Int. Mater. Rev. 39 (1994) 191.
    [30] Y.Y. Chang, C.C. Tsaur and J.C. Rock, Surf. Coat. Technol. 200 (2006) 6588.
    [31] A.C. Lilly, S.C. Deevi, Z.P. Gibbs, “Electrical properties of iron aluminides”, Master Science Engineering A, 258, 42 (1998).
    [32] Wen-Ta Tsai, and Kuo-En Huang, “Microstructure Aspect and Oxidation Resistance of an Aluminide Coating on 310 Stainless Steel,” Thin Solid Films, PP. 164 ~ 168 (2000).
    [33] V. N. Yeremenko, Y. V. Natanzon, VL. Dybkov, J. Master. Sci. 16, pp.88 ~ 93 (1981).
    [34] M. Johnson, D.E. Mikkola, P.A. March, R.N. Wright, Wear 140 (1990).
    [35] C.G. Mckamy, J.h. Devan, P.f. Tortorelli, V.K. Sikka, J. Master. Res. 6, pp.695 ~ 707 (1991).
    [36] J.R. Knibloe and R.N. Wright, C.L. Trybus, V.k. Sikka, J. Master. Sci. 28, 2040 (1993).
    [37] R.G. Balididad, A. Radhakrishna, Master. Sci. Eng. A287, pp.23 ~ 29 (2000).
    [38] N.S. Stoloff, Mater. Sci. Eng. A258, pp.1 ~ 14.
    [39] 張憲文,「熱浸覆蓋法(下)」,金屬表面技術雜誌,第87期,
    第62 ~ 83 頁,民國75年5月。
    [40] K. Bouche, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between aolid iron and molten aluminum”, Materials Science and Engineering A, 249, 167 (1998).
    [41] D. Wang and Z. Shi, “Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel”, Applied Surface Science, 227, 255 (2004).
    [42] K. Stein-Fechner, J. Konys, and O. Wedemeyer, “Investigations on the transformation behavior of the intermetalic phase (Fe, Cr)2Al5 formed on MANET II steel by aluminizing”, Journal of Nuclear Materials, 249, 33 (1997).
    [43] Zs. Tokei, H. Viefhaus and H.J. Grabke, Appl. Surf. Sci. 165 (2000) 23.
    [44] S. Kobayasi and T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment”, Materials asacience Engineering A, 338, 44 (2002).
    [45] W.J. Cheng and C.J. Wang, “EBSD characterization of high-temperature phase transformations in an Al-Si coating on Cr-Mo steel”, Materials Characterization, 64, 15, (2012).
    [46] T.L. Hu, H.L. Huang, D. Gan and T.Y. Lee, Surf. Coat. Technol. 201 (2006) 3502.
    [47] S. Shankar and D. Apelian, Metall. Master. Trans. B 33 (2002) 465.
    [48] G.H. Awan and F. U. Hasan, “The morphology of coating / substrate interface in hot-dip-aluminizes steels”, Materials Science Engineering A, 472, 157 (2008).
    [49] J.L. Song, S.B. Lin, C.L. Yang and C.L. Fan, J. Alloy. Compd. 448 (2009) 217.
    [50] M.B. Lin and C.J. Wang,”Microstructure and high temperature oxidation behavior of hot-dip aluminized coating on high silicon ductile iron”, Surface and Coating Technology, 205, 1220 (2010).
    [51] S. Kobayashi, T. Yakou, Mater. Sci. Eng. A 338 (2002) 44.
    [52] H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, B. Sepiol, Mater. Sci. Eng. A 239 (1997) 889.
    [53] T. Maitra, S. P. Gupta, Mater. Charact. 49 (2003) 293.
    [54] A. S. Khanna, “Introduction to High Temperature Oxidation and Corrosion”, ASM International, USA, pp.26 (2002).
    [55] A. S. Khanna, “Introduction to High Temperature Oxidation and Corrosion”, ASM International, USA, pp.38 (2002).
    [56] O. Kubaschewaki and B.E. Hopkins, “Oxidation of Metals and Alloys”, Academic Press, New York, pp.113 (1962).
    [57] N. Birks and G.H. Meier, “Introduction to high temperature oxidation of metals”, Edwar Arnold Ltd, pp.73 (1983).
    [58] F. Gesmundo and F. Viani, Corrosion Sci. 18 (1978) 231.
    [59] A. Rahmel, Chem. Metall. Iron Steel 146 (1973) 395.
    [60] P. Curcio, B. Kerezsi, P. Brown, Eng. Fail. Anal. 11(2004) 925.
    [61] M.B. Lin, C.J. Wang, Alex A. Volinsky, Oxid. Met. 76 (2011) 161.
    [62] Yun Long Yang, Zhan Yi Cao, Yang Qi, Yong Bing Liu, Advanced Materials Research 97 ~ 101 (2010) 530.
    [63] 林盟斌,片狀石墨與球狀石墨鑄鐵塗覆鋁/鎳鋁塗層厚之高溫氧化與顯微結構博士學位論文,國立台灣科技大學機械所,民國100年12月。
    [64] T. Ban, “The formation of protective films on iron-silicon alloys”, Corrosion Science, vol. 19. pp. 228 ~ 293, 1979.
    [65] A. Atkinson, “A theoretical analysis of the oxidation of Fe-Si alloys”, Corrosion Science, vol. 22, pp. 87 ~ 102, 1982.
    [66] P.T. Mosely, “The oxidation of dilute iron-silicon alloys in carbon dioxide”, Corrosion Science, vol. 22, pp. 68 ~ 86, 1982.
    [67] D.R. Holmes, “New corrosion-resistant high temperature heat exchanger materials’, Corrosion Science, Vol. 8, p. 603 ~ 622, 1968.
    [68] 賴佑昇,高矽球墨鑄鐵在空氣中之氧化行為及顯微組織碩士學位論文,國立台灣科技大學機械所,民國100年7月。
    [69] 40th Census of World Casting Production-2005, Modern Casting, p.28 (2006).
    [70] J.R. Dryden, G. R. Purdy, Acta metal. 37 (1989) 1999.
    [71] William F. Smith, “Structure and Properties of Engineering Alloys”, McGraw-Hill, New York, p.335 (1993).
    [72] C.F. Walton, Iron Casting Handbook, Iron Casting Society, New York, (1981).
    [73] H. Hanemann, H. Jass:Giesserie 25 p.293, (1938).
    [74] J.M. Schissler and J. Saverna, “The Effect of Segregation on the Formation of Austempered Ductile Iron”, J. Heat Treating, Vol. 4, No. 2, pp.167 ~ 176 (1985).
    [75] 潘國桐 等譯,球墨鑄鐵手冊,中華民國駐造學會,民國83年11月 (1994)。
    [76] 潘永寧,「耐高溫球狀石墨鑄鐵」,機械月刊,第10卷,第8期,第95 ~ 101頁,民國73年8月(1984)。
    [77] C.F. Walton, Iron Casting Handbook, Iron Casting Society, pp.358 ~ 374 (1981).
    [78] 林本源,「合金元素對球墨鑄鐵沃斯回火相轉變的影響」,博士論文,台灣工業技術學院,台北(1995)。
    [79] 王信義,「高矽低合金球墨鑄鐵偏析現象之研究」,碩士論文,國立台灣科技大學,台北(2004)。
    [80] 潘永寧,「耐高溫球狀石墨鑄鐵」,機械月刊,第10卷,第8其,第95 ~ 101頁,民國73年8月(1984)。
    [81] G. J. Shubat Metals Handbook 8th edition Vol.8 – Metallography, Structure and Phase Diagramsm, ASM (1973).
    [82] B. Black, G. Burger, Logan R., Perrin R., Gundlach R., “Microstructure and Dimensional Stability in Si-Mo Ductile Irons for Elevated Temperature Applications”, SAE 2002-01-2115, SAE, Warrendale PA.(2002).
    [83] 江芝宇,高矽球墨鑄鐵的鉬含量對顯微結構的影響碩士學位論文,國立台灣科技大學機械所,民國100年7月。
    [84] 張智凱,含鉬高矽球墨鑄鐵顯微結構與機械性質的研究碩士學位論文,國立台灣科技大學機械所,民國95年7月。
    [85] B.Block, G. Burger, R. Logan and R. Perrin, “Microstructure and Diminsional Stability in Si-Mo Ductile Irons for Elevated Temperature Spplications”, SAE World Congress, 2004-01-0792 (2004).
    [86] 鄭維仁、王朝正、防蝕工程,第22卷,第4期,2008,第287 ~ 294 頁。
    [87] 鄭維仁,鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為博士學位論文,國立台灣科技大學機械所,民國100年9月。
    [88] U. Burkhardt, Yu. Grin, M. Ellner and K. Peters, Acta Crystallogr. Sect. B: Struct. Sci. 50 (1994) 313.
    [89] G. Neumann, in: H. Mehrer (ED), Diffusion in Solid Metals and Alloys, Numerical Data and Functional Relationships in Science and Technology, vol. 26, Springer, 1990.
    [90] A.D. Le Claire, “Diffusion in Solid Metals andAlloys, Numerical Data and Function Relationship in Science and Technology”, vol. 26, Springer, 1990, p. 129.
    [91] C.J. Wang and C.C. Li, Surf. Coat. Technol. 177 ~ 178 (2003) 37.
    [92] C.C. Tsaur, J.C. Rock, and Y.Y. Chang, Mater. Chem. Phys. 91 (2005).
    [93] 滿志謙,高溫應力對低碳鋼熱浸鍍鋁層之影響碩士學位論文,國立台灣科技大學機械所,民國99年8月。
    [94] 許芷寧,碳鋼中顯微組織對熱浸鋁之作用碩士學位論文,國立台灣科技大學機械所,民國100年7月。
    [95] L.N. Larikov, V.M. Falchenko, D.F. Polishebuk, V.R. Ryabov, and A. V. Lonovskays, “Protective Coatings on Metals”, vol. III, Consultant Bureau, New York, 1971, p. 56.
    [96] S. H. Park, J. M. Kim, H. J. Kim, S. J. Ko, H. S. Park, and J. D. Lim, “Development of A Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds”, SAE International, SAE 2005-01-1688, (2005).
    [97] 黃振賢,金屬熱處理,新文京開發出版有限公司,台北,第232 ~ 237 頁,(1997)。
    [98] F. Tholence and M. Norell, “High temperature corrosion of cast alloys in exhaust environment I-ductile cast iron,” Oxidation of Metals, vol. 69, pp.13 ~ 36, 2008.
    [99] 林頌恩,添加Si及Al對Ti、Nb及Mo合金之抗高溫氧化研究碩士學位論文,國立台灣海洋大學材料所,民國100年11月。
    [100] Kubaschewski and Hopkings, Oxidation of metal and alloy, New York:Academic Press, 1962.
    [101] J. Robertson, “Healing layer formation in Fe-Cr-Si ferritic steels,” Materials Science and Technology, vol. 5, pp. 741 ~ 753, 1989.
    [102] N. Birks and G. H. Meierm, Introduction tohigh temperature oxidation of metals. London:Edwar Arnold Ltd, 1983.
    [103] T. Ban, “The formation of protective films on iron-silicon alloys,” Corrosion Science, vol. 19, pp.289 ~ 293, 1979.
    [104] S. H. Park,”Development of a heat resistant cast iron alloy for engine exhaust manifolds,” SAE2005-01-1688, SAE, 2005.
    [105] C.W. Tuck, “Non-Protective and protective scaling of a commercial 1 3/4 silicon-Iron alloy in the range 800 ~ 1000 C,” Corrosion Science, vol. 5, pp.631 ~ 643,1965.
    [106] A. Atkinson, “A theoretical analysis of the oxidation of Fe-Si
    alloy,”Corrosion Science, vol. 22, pp.87 ~ 102, 1982.
    [107] P. T. Moseley, “The oxidation of dilute iron-silicon alloys in carbon dioxide,” Corrosion Science, vol. 22, pp.68 – 86, 1982.
    [108] N. A. EI-Mahallawy, M. A. Taha, M. A. Shady, A. R. EI-Sissi, A. N. Attia, and W. Reif, Mater. Sci. Technol. 13 (1997) 832.
    [109] B.A. Pint, J. Leibowitz, J.H. De Van, Oxid. Met. 51, 1999, 181.
    [110] J. Robertson and M.I. Manning, Mater. Sci. Tech. 5, 1989, 741.
    [111] A.S. Khanna, High Temperature Oxidation and Corrosion, ASM International, Nevda, 2002, pp.1 ~ 11.
    [112] A, Atkinson, “A theoretical analysis of the oxidation of Fe-Si alloys,” Corrosion Science, vol. 22, pp87 ~ 102, 1982.
    [113] F. Tholence, “AES characterization of oxide grains formed on ductile cast irons in exhaust environment,” Surface and Interface Analysis, vol. 34, pp.535 ~ 539, 2002.
    [114] 日本腐蝕防蝕協會編,池田雄二等著,黃中良譯,金屬材料之高溫軮化與腐蝕:第三章”,復漢出版社, p. 70,1988。
    [115] A. Atkinson, J. W. Gardner, “The diffusion of Fe3+ in amorphous SiO2 and the protective properties of SiO2 layers”, Corrosion Science, Vol. 21, pp. 49 ~58, 1981.

    QR CODE