簡易檢索 / 詳目顯示

研究生: 許几權
Chi-Chuan Hsu
論文名稱: 緩衝層在SUS 316L不銹鋼被覆鎳基超合金52M機械性質研究
Effect on Buffer Layer with Inconel 52M Clad on 316L Stainless SteeL
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 朱瑾
Jinn-P. Chu
蔡履文
L.W. Tsay
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 74
中文關鍵詞: 鎳基超合金IN 52M異種金屬銲接
外文關鍵詞: SUS 316L, Inconel 52M, dissimilar welding
相關次數: 點閱:212下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究重點以氬銲(GTAW)為製程,以不銹鋼SUS 309L材料為緩衝層,被覆於母材SUS 316L上,再於緩衝層上方被覆三層 In 52M,期望藉由緩衝層之銲接參數設計,改善SUS 316L母材被覆過程之機械性質,以確保安全及經濟效益。
    本研究以光學顯微鏡觀察緩衝層與In 52M被覆材微觀組織,微硬度試驗進行硬度值量測,側彎進行規格試驗,肥粒鐵磁性量測及被覆層稀釋率量測,電子顯微鏡觀察被覆層熱影響區與母材間表面形貌及能量分散光譜儀分析析出物及各層化學成份等,獲至結論如下: 母材SUS 316L與緩衝層SUS 309L 被覆層界面組織為樹枝晶狀結構,熱影響區、熔融線不明顯,δ-ferrite於母材、緩衝層熔融區成長;Nb的增加促使被覆層組織由胞狀枝晶轉變為柱狀枝晶;因多次被覆之影響下被覆層硬度值較上被覆層高,硬度值最大值位於母材界面,其原因是多次熱循環後,產生再熱細晶區;由EDS中分析銲料對母材稀釋率,隨被覆層次增多時,Fe含量減少,Cr、Ni含量微增;在電子顯微鏡中發現被覆層析出物之位置主要分佈在樹枝狀結構的間隙中,量測析出物的成份為Ti、Nb、N及C等的氮化物及碳之化合物。
    冀能尋求採用緩衝層在異種金屬銲接時可發揮的特性,以作為工業界使用上的參考。


    The research focused on GTAW as the manufacturing process and used SUS309L stainless steel as buffer layers to clothe on SUS316L. Besides,three layers of In 52M were clad on buffer layers. Through the design of welding parameters of buffer layers, we look forward to improving the problem of mechanical properities in the process of clothing of SUS316L. To ensure safety and economic benefits.
    We used the optical microscopes for the study to observe the microstructure of buffer layers and IN 52M. Vickers hardness test was used to test hardness. Standards, magnetism of ferrite, and dilution ratio of buffers were tested by side belding. In addition, electron microscopes were used to observe the appearance between base metal (BM) and the heat-affected zone (HAZ) of buffer layers. We also used the EDS to analyze separation and chemical composition of each layer. The conclusions are as follows: The interface of overlayer of SUS316L and SUS309L is dendritic structure.There is HAZ and fusion lines are not clear.δ-ferrite grows in BM and the fusion zone of buffer layers. The increase of Nb made the overlayer change from cellular to colummar dendritic. Because of the influence on many times’ welding, the hardness of lower overlayer is harder than that of upper overlayer. HAZ of BM is the hardest. From EDS’ analysis of dilution ratio of the solder and BM, Fe decreases and Cr as well as Ni increase a little as the layers of clothing increases. Moreover, we found the place of separation of overlayer mainly lies in the clearance of dendritic structure and that the composition of separation is Nitride and Carbide like Ti, Nb, N, and C.
    We expect to adopt the properties of buffer layers when dissimilar
    metal welding happens as the reperence of the usage of the industry.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 IX 第一章 前言 1 第二章 文獻回顧 3 2.1不銹鋼 3 2.1.1不銹鋼簡介與分類 3 2.1.2 合金元素對不銹鋼性質的影響 6 2.2 異種金屬銲接 7 2.2.1 母材的選擇 8 2.2.2銲材的選擇 9 2.2.3銲接方法 9 2.3熔融區與熱影響區的定義 10 2.3.1熔融區的組織 11 2.4 銲接理論 12 2.4.1組織過冷理論與凝固模式 12 2.4.2 沃斯田鐵不銹鋼銲接之凝固過程 16 2.4.3肥粒鐵組織對沃斯田鐵不銹鋼的影響 18 2.5銲接缺陷 20 2.5.1銲道金屬之凝固熱裂 20 2.5.2敏化現象 22 2.5.3 σ相 23 2.6銲件改進與防制方法 24 第三章 實驗方法 26 3.1實驗流程 26 3.2 實驗材料 27 3.3肥粒相量測 28 3.4 銲接參數設計 29 3.5 被覆層製作及稀釋率測定 32 3.6 側邊彎曲試驗 33 3.7 微硬度量測 35 3.8 金相觀察 36 3.9 電子顯微鏡觀察 37 第四章 實驗結果與討論 38 4.1 被覆參數測試與分析 38 4.2側彎試驗分析 49 4.3 微硬度試驗分析 52 4.4金相顯微組織觀察 55 4.4.1母材區之金相組織 55 4.4.2緩衝層與被覆層金相組織 59 4.5 SEM觀察與EDS分析 62 第五章 結論 70 參考文獻 71 作者簡介 74

    [1] J. Lippold, “IN 52M Overlay Development for Surge Nozzle Weld Repairs”, 8th International EPRI Conference on Welding and Repair Technology for Power Plants, ed. By S. Findlan, Fort Myers, Florida, June 18-20(2008)
    [2] 梁仲賢,「壓水式核反應器材料的腐蝕與防治對策」,核研季刊,第26 期,第8-12頁(1999)。
    [3] G.J. Theus and R.H. Emanuelson, “Stress Corrosion Cracking of Alloy 600 and Alloy 690 in All Volatile Treated Water at Elevated Temperature”, EPRI-Report, No. NP-3061 (1983)
    [4] John C. Lippold and Damian J. Kotecki, Welding Metallurgy and Weldabiliry of Stainless Steels, John Wiley & Sons, Hoboken, New Jersey, pp. 311-329 (2005)
    [5] 郭聰源、李驊登、葉東昌、 杜青駿、鄭勝隆, 「鎳基690 合金銲件之顯微組織與機械性質研究」,金屬熱處理,Vol. 57 , pp. 15-22 (1998)
    [6] 周漢標、廖德潭、洪文山,「沃斯田鐵不銹鋼之銲接特性及熱裂分析(上)」,機械月刊,第十八卷,第二期,第163頁 (1992)。
    [7] Erich Folkhard, Welding Metallurgy of Stainless Steel, VerlagWein , New York , p. 199 ( 1988)
    [8] P. Marshall, Austenitic Stainless Steels Microstructure and Mechanical Properites, Elsevier Applied Science Publishers, P. 424. (1984)
    [9] Sindo Kou, Welding Metallurgy, second edition, Wiley, pp. 158-166 (2003)
    [10]曾光宏,「沃斯田鐵不銹鋼銲接性之探討」,機械技術雜誌,第160期,第96-103頁 (1998)。
    [11] 曾光宏、周長彬,「銲接參數對304不銹鋼變形之影響」,機械技術雜誌,第168期,第144-150頁 (1999)。
    [12] J. A. Brooks and A. W. Thompson, “Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stanless Steel Welds”, International Materials Reviews, Vol. 36, No. 1, pp. 16-37 ( 1991)
    [13] S. D Kiser, et al. “Nickel Alloy Welding Requirements for Nuclear Service, ” in Focus on Nuclear Power Generation (2005)
    [14]鄭勝隆,「鎳基690合金與SUS 304L不銹鋼異種金屬銲接特性與微結構研究」,博士論文,國立成功大學,台南,第77-102頁(2003)。
    [15]黃錦鐘,「不銹鋼的銲接(一)不銹鋼的銲接凝固現象」,機械月刊,第二十三卷,第二期,第227-233頁 (1997)。
    [16] E. Folkhard, G. Rabensteiner, E. Pertender and H. Schabereiter, Welding Metallurgy of Stainless Steel, Springer-Verlag, New York, pp. 55-69 (1988)
    [17]S. Jana, “Effect of Heat Input on the HAZ Properties of TwoDuplexStainless Steels”, Journal of Material Processing Technology, Vol. 33, p.247 ( 1992)
    [18] T. Takalo, N. Suutala, T. Moisio, “Influence of Ferrite Content on its Morphology in Some Austenitic Weld Metals”, Metall. Trans. A, Vol. 7A, No. 10, pp. 1591-1592 (1976)
    [19]Hannu Hänninen, Anssi Brederholm, Tapio Saukkonen, Hans Gripenberg, Aki Toivonen, Ulla Ehrnstén, and Pertti Aaltonen, “Hot cracking and environmentassisted cracking susceptibility of dissimilar metal welds” , Research Notes, VTT, Finland, p. 49 (2007)
    [20] S. Kou, “Solidification and Liquation Cracking Issues in Welding” , JOM, Vol. 55, No. 6, pp. 37-42 (2003)
    [21]晁成虎,「多重熱循環對超合金718 銲接性之影響」, 碩士論文,國立交通大學,新竹,第20-45頁 (1986)。
    [22] 謝榮淵,「不銹鋼之銲接特性 (I)」,銲接與切割,第七卷,第五期,第40-49頁(1997) 。
    [23] 朱厚瑾、黃金城、鄭勝隆,「核三廠一、二號機調壓槽管嘴異質銲道預覆焊」,行政院原子能委員會核能研究所專題研究報告,臺北,第4-6頁 (2008)。
    [24] F. Muller, “Discussion Session 4,Fabrication and Service Experence of Welding Dissimiliar Metals Conference“ ,Metal Construction and British Welding Jourmal , PP 143-144 (1969)
    [25]H. B. Cary, Modem Welding Technology, 4th, ed, Prentice-Hall, New Jersey, USA , p. 553 (1998)
    [26]ASME, Boiler and Pressure Vessel Code, Section II, Part C, ASME, New York (2007)
    [27] ASM, Metals Handbook, 10th Edition, Vol. 2 (1990)
    [28] ASME, Specifications for Welding Rods Electrodes and Filler Metals, Vol. 2, No. 3 (2007)
    [29] C.D.Lundin and C.P.D.Chou, “Fissuring in the Hazard Haz Region of Austenitic Stainless Welds”, Welding Journal, P.113 (1985).
    [30] AWS, “Welding Handbook Welding Processes”, 9th , Vol. 1 ,pp 75-89 (2001)
    [31]Yamaguchi, T., M. Kato and T. Nokami, “Metallurgical characteristics of A5083-0 aluminum alloy welded by high energy density welding, ” Welding International 13(3), pp. 712-720(1999)
    [32]黃朝鈿,「Inconel 52M被覆於SUS316L之特性研究」,碩士論文,國立臺灣科技大學,台北,第38-50頁 (2009)。
    [33] M.J. Cieslak, T.J. Headley, T. Kollie and A.D. Romig, Jr.,” A Melting and Solidification Study of Alloy 625,” Metallurgical and Materials Transactions A Vol. 19A , No. 9, pp. 2319-2331 (1988)

    QR CODE