簡易檢索 / 詳目顯示

研究生: 林松禾
Song-he Lin
論文名稱: 以不同氮源先驅物氣相磊晶氮化鋁薄膜之研究
Gas phase epitaxy of AlN using various nitrogen precursors
指導教授: 洪儒生
Lu-sheng Hong
口試委員: 魏大欽
Ta-chin Wei
周賢鎧
Shyan-kay Jou
邱正杰
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 118
中文關鍵詞: 氮化鋁化學氣相沈積法三乙基胺•鋁烷
外文關鍵詞: AlN, CVD, triethylamine alane
相關次數: 點閱:375下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文乃以不同氮源先驅物為原料的冷壁式低壓化學氣相沈積法,探討在不同基材上異質成長氮化鋁薄膜的相關議題。首先,單一分子先驅物三乙基胺•鋁烷(TEAA)的長膜在500oC的高溫下,會成長出以碳化鋁(Al2C)為主體的非晶向薄膜,其次以第三丁基聯胺與三甲基鋁(TBHy/TMAl)反應系統選用藍寶石晶片(sapphire)作為基材,在成長溫度為700oC、總壓3 torr、五三族元素進料比為6.2下成長出氮化鋁膜;最後在氨氣與三甲基鋁(NH3/TMAl)反應系統中則選用經過表面碳化處理的矽(111)晶片作為基材,實驗結果發現在總壓10 torr、五三族元素進料比為2500下,基材溫度為1100 oC時,成長出以(0002)為擇優方向的氮化鋁(AlN)薄膜。


Aluminum nitride (AlN) films were grown by a low pressure chemical vapor deposition (LPCVD) method. Many combination of reactants and substrates have been studied. Firstly, a single molecular precursor named triethylamine alane was used that formed aluminum carbide with only a small amount of Al-N bonding at 973 K. Secondly, TMAl/TBHy reaction system show polycrystalline growth of AlN at a low temperature of 973 K. Finally, AlN(0002) films were successfully synthesized on SiC(111) at 1373 K by using TMAl/NH3 reaction system with a large V/III feeding ratio of 2500.

中文摘要.............................................I 英文摘要............................................II 誌謝...............................................III 目錄.................................................V 圖索引.............................................VII 表索引.............................................XVI 第一章 前言 1.1 導言 ...........................................1 1.2 氮化鋁製備方式 ..................................7 1.3 研究動機與目的..................................10 第二章 實驗相關部份 2.1 實驗裝置........................................11 2.2 沈積用基材的製備方法............................19 2.3 實驗程序........................................23 2.4 薄膜特性的量測 ..................................25 第三章 結果與討論 3.1 在Si(111)上成長碳化矽薄膜品質之研究.............32 3.2 TEAA於CVD系統中的沈積行為 3.2-1 TEAA於不同基材溫度下的沈積行為...........40 3.2-2 TEAA於沈積溫度700oC下的薄膜原子組成之分 析.........................................55 3.3 TBHy/TMAl系統成長AlN薄膜 3.3-1以不同TMAl分壓對AlN薄膜成長的影響.........65 3.3-2 以不同反應溫度及基材氮化時間對AlN薄膜成長的 影響.......................................74 3.4 NH3/TMAl系統成長AlN薄膜 3.4-1以不同V/III進料比對AlN薄膜成長的影響......82 3.4-2 以不同反應溫度對AlN薄膜成長的影響........91 第四章 結論........................................98 參考文獻............................................99

1. H. Amano, M. Kito, K. Hiramatsu, I.Akasaki, Inst. Phys. Conf. Ser., 106, 725 (1989).
2. S. Nakamura, T. Mukai, M. Senoh, Jpn. J. Appl. Phys., 30, L1998 (1991).
3. S. Nakamura, G. Fasol, “The Blue Laser Diode”, Springer, Berlin, (1997).
4. M. A. Kahn, Q. Chen, M. S. Shur, B. T. McDermott, J. A. Higgins, IEEE Electron Device Lett., 17,325 (1996)
5. Jipo Huang, Lianwei Wang, Qinwo Shen, Chenglu Lin, Mikael Ostling, journal of electronic materials, 28, 225 (1999).
6. A. Raveh, M. Weiss, M. Pinkas, D.Z. Rosen, G. Kimmel, Surface and Coating Technology, 114, 269 (1999).
7. 王宏灼,”反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所,碩士論文(1995)。
8. 黃靜茹,”在底層電極上以常溫成長氮化鋁薄膜之研究”,國立中山大學材料科學研究所,碩士論文(2000)。
9. John B. Blum, “Aluminum Nitride Substrates for Hybrid Microelectronic Application”.
10. Y. Kulokawa, K. Utsumi, H. Takamizaura, I. Kamate, S. Noguchi, IEEE Transaction on components, hybrid, and manufacturing technology, chmt-8, 247 (1985).
11. M. P. Borom, G. A. Slack, J. W. Szymaszek, Ceramic Bulletin, 51, 852 (1972).
12. G. A. Slack, R. A. Tanzill, R. O. Pohl, J. W. Vander Sande, J. Phys. Chem. Solid, 48, 641 (1987).
13. James H. Edgar and W. J. Meng, Properties of Group III Nitrides, (1993).
14. C. Caliendo, G. Saggio, P. Verardi, E. Verona, IEEE Ultrasonics symposium, 249 (1993).
15. 王惠明,”以濺射法研製氧化鋅/砷化鎵表面聲波元件”,國立成功大學電機工程研究所,碩士論文(1986)。
16. H. C. Lee and J. Y. Lee, journal of Materials Science:Materials in Electronics, 5, 221 (1994).
17. M. Kishi, M. Susuky and K. Ogawa, Jpn. J. Appl. Phys., 31, 1153 (1992).
18. J. H. Edgar, Z. J. Yu and B. S. Sywe, Thin Solid Films, 204, 115 (1991).
19. P. Bhattacharya and D. N. Bose, Jpn. J. Appl. Phys., 30, 1750 (1991).
20. S. Nakamura, M. Senoh, N. Ieasa, T. Yamada, T. Matsushita, Appl. Phys. Lett., 69, 3034 (1996).
21. S. Tomabechi, K. Wada, S. Saigusa, H. Matsuhashi, H. Nakasa, K. Masu and K. Tsubouchi, IEEE, 263 (1999).
22. S. Tomabechi, K. Wada, S. Saigusa, H. Matsuhashi, H. Nakasa, K. Masu and K. Tsubouchi, IEEE, 263 (1999).
23. H. Gong, X. Jiang, Journal of Crystal Growth, 235, 333 (2002).
24. Ju-Won Soh, S. S. Jang, I. S. Jeong and W. J. Lee, Thin Solid Films, 279, 17 (1996).
25. H. D. Schenk, U. Kaiser, G. D. Kipshidze, Material Science and Engineering, 59, 84 (1999).
26. S. Yoshida, S. Misawa, Fujii., S. Takada, H. Hayakawa, S. Gonda, J. Vac. Sci. Technol., 16, 990 (1979).
27. M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, Y. Ide, Thin Solid Film, 316, 152 (1998).
28. A. Jacquot, B. Lenoir, A. Dauscher, P. Verardi, Applied Surface Science, 186, 507 (2002).
29. K. Seki, X. Xu, H. Okabe, J. M. Frye and J. B. Halpern, Appl. Phys. Lett., 60, 2234 (1992).
30. P. Verardi, M. Dinescu, C. Gerardi, L. Mirenghi, V. Sandu, Applied Surface Science, 109/110, 371 (1997).
31. A. F. Belyanin, L. L. Bouilov, V. V. Zhirnov, A. L. Kamenev, K. A. Kovalskij, Diamond and Related Materials, 8, 369 (1999).
32. D. Manova, V. Dimitrova, D. Karpuzov, R. Yankov, Vacuum, 52, 301 (1999).
33. T. P. Drusedau, K. Koppenhagen, Surface and Coating Technology, 153, 155 (2002).
34. H. Okano, Y. Takahashi and T. Tanaka, Jpn. J. Appl. Phys., 31, 3446 (1992).
35. W. J. Meng, J. A. Sell and T. A. Perry, J. Appl. Phys., 75, 3446 (1994).
36. C. C. Cheng, Y. Chen, H. J. Wang and W. R. Chen, Jpn. J. Apply. Phys., 354, 35 (1996).
37. B. Wang, Y. N. Zhao and Z. He, vacuum, 48, 427 (1997).
38. A. Raveh, M. Weiss, M. pinkas, D. Z. Rosen, G. Kimmel, Surface and Coating Technology, 114, 269 (1999).
39. P. Bhattacharya and D. N. Bose, Jpn. J. Appl. Phys., 30, 1750 (1991).
40. T. Detchprohm, K. Hiramatsu, N. Sawaki and I. Akasaki, Journal of Crystal Growth, 137, 171 (1994).
41. Q. Guo, O. Kato and N. Mikoshiba, IEEE Trans. on Sonics and Ultrasonics, SU-32, 634 (1985).
42. H. M. Liaw, R. Doyle, P. L. Fejes, S. Zollner, A. Konkar, K. J. Linthicm, T. Gehrke, R. F. Davis, Solid-State Electronics, 44, 747 (2000).
43. D. C. Boyd, R. T. Haasch, D. R. Mantell, R. K. Schulze, J. F. Evans and W. L. Gladfelter, Chem. Mater., 1, 119 (1989).
44. C. J. Linnen, D. F. Macks and R. D. Coombe, J. Phys. Chem. B, 101, 1602 (1997).
45. L. V. Interrante, W. Lee, M. MaConnell, N. Lewis and E. Hall, J. Electrochem. Soc., 136, 472 (1989).
46. R. K. Schulze, D. C. Boyd, J. F. Evans and W. L. Gladfelter, J. Vac. Sci. Technol.A, 8, 2338 (1990).
47. L. H. Dubois, B. R. Zegarski, C.-T. Kao and R. G. Nuzzo, Surface Science, 236, 77 (1990).
48. W. L. Gladfelter, D. C. Boyd, J. W. Hwang, R. T. Haasch, J. F. Evans, K. L. Ho and K. F. Jensen, Mater. Res. Soc. Symp. Proc., 131, 447 (1989).
49. S. Fujieda, M. Mizuta and Y. Matumoto, Jpn. J. Appl. Phys., 26, 2067 (1987).
50. S. Miyoshi, K. Onabe, N. Ohkouchi, H. Yaguchi, R. Ito, S. Fukatsu and Y. shiraki, Journal of Crystal Growth, 124, 439 (1992).
51. Shuichi Nishide, Takashi Yoshimura, Yukichi Takamatsu, Atsushi Ichige, Kangsa Pak, Naoki Ohshima, Hiroo Yonezu, Journal of Crystal Growth, 189/190, 325 (1998).
52. Yu Jen Hsu, Lu Sheng Hong, Jyh Chiang Jiang, Jing Chong Chang, Journal of Crystal Growth, 266, 347 (2004).
53. U. W. Pohl, C. Moller, K. Knorr, W. Richter, J. Gottfriedsen, H. Schumann, K. Rademann, A. Fielicke, Material Science & Engineering B, B59, 20 (1999).
54. 胡銘顯,”以矽甲烷/乙炔/氫-化學氣相沉積系統在矽基材上合成碳化矽薄膜之研究”,國立台灣科技大學,碩士論文(2001)。
55. 汪建民,”材料分析”,民全書局,台北市(87年)。
56. M. E. Gross, C. G. Fleming, K. P. Cheung and L. A. Heimbrook, J. Appl. Phys., 69, 2589 (1991).
57. John A. Dean, “Lange’s Handbook of Chemistry”, McGraw-Hill, 13th, chap. 9, 9-4 (1997)
58. A. V. Lobanova, K. M. Mazaev, R.A. Talalaev, M. Leys, S. Boeykens, K. Cheng, S. Degroote, Journal of Crystal Growth, 287, 601 (2006).

QR CODE