簡易檢索 / 詳目顯示

研究生: 劉宜國
Yi-kuo Liu
論文名稱: 一類基於T-S模糊非線性容錯控制之研究
Study of a Class of T-S Fuzzy-Based Nonlinear Fault-Tolerant Control
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 吳德豐
De-feng Wu
周宏隆
Hong-long Zhou
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: T-S模糊模型容錯控制終端順滑模控制非奇異終端順滑模控制
外文關鍵詞: T-S fuzzy models, fault-tolerant control, terminal sliding mode control (TSMC), nonsingular terminal sliding mode control (NTSMC
相關次數: 點閱:637下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文之中,我們基於T-S模糊模型(T-S fuzzy model)同時結合了終端順滑模控制(terminal sliding mode control)與非奇異終端順滑模控制(nonsingular terminal sliding mode control),來進行主動式容錯控制律的設計,而此結合技術仍保有T-S模糊模型以及終端順滑模控制、非奇異終端順滑模控制的優點;透過T-S模糊模型來近似原始非線性系統,使得大部分系統所使用到的參數都可以採取離線計算,進而減輕即時運算(online computation)的負擔。此外,終端順滑模控制不僅可保留對於模型不確定性(model uncertainties)或外在干擾(external disturbances)之強健性、快速響應、容易建構等特性,同時相較於一般傳統順滑模控制,終端順滑模控制能夠在有限時間內達到目標控制點,在系統狀態的收斂速度上明顯獲得改善。對於終端順滑模控制可能出現的奇異性問題,我們以非奇異終端順滑模控制來加以解決,其擁有上述終端順滑模控制之優點,亦能夠證明系統狀態將在有限時間內達到目標控制點。所提出之方法將運用於衛星姿態的容錯控制上,最後模擬結果清楚說明了結合技術之有效性。


    This thesis studies the active fault-tolerant control design based on the Takagi-Sugeno (T-S) fuzzy system models, terminal sliding mode control (TSMC) and nonsingular terminal sliding mode control (NTSMC). This hybrid scheme can keep the advantages of both methods. By using the T-S fuzzy models to approximate the original nonlinear system, the online computation burden can be alleviated since most of the T-S parameters can be offline computed. Moreover, TSMC not only owns the merits, including robustness to uncertainties and/or disturbances, fast response, and easy implementation, but also performs better than conventional sliding mode control (SMC) since the system states of TSMC will converge in finite time to the control objective point. However, there might be singularity problem in the design of TSMC design. To solve the singularity problem, the NTSMC is proposed. The NTSMC can still guarantee that the system state converge in a finite amount of time. The proposed analytical results are also applied to the fault-tolerant control for the attitude stabilization of a spacecraft. Simulation results demonstrate the benefits of the proposed scheme.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第1章 簡介 1 1.1研究背景與動機 1 1.2論文架構 3 第2章 預備知識 4 2.1順滑模控制 4 2.2終端順滑模控制 8 2.3非奇異終端順滑模控制 13 2.4 T-S模糊模型 17 第3章 衛星姿態容錯問題研究 21 3.1問題描述 22 3.2主動式容錯控制律設計 23 3.2.1 順滑模容錯控制律設計 24 3.2.2 終端順滑模容錯控制律設計 27 3.2.3 非奇異終端順滑模容錯控制律設計 30 3.3衛星姿態容錯控制之模擬 34 3.3.1 衛星動態系統 34 3.3.2錯誤偵測與診斷機制之觀察器設計 35 3.3.3模擬結果 38 第4章 基於T-S模糊模型之衛星姿態容錯問題研究 63 4.1問題描述 64 4.2建立T-S 模糊模型 65 4.3基於T-S模糊模型之主動式容錯控制律設計 66 4.3.1 順滑模容錯控制律設計 67 4.3.2 終端順滑模容錯控制律設計 70 4.3.3 非奇異終端順滑模容錯控制律設計 73 4.4衛星姿態容錯控制之模擬 77 4.4.1建立T-S模糊模型 77 4.4.2錯誤偵測與診斷機制之觀察器設計 84 4.4.3模擬結果 84 第5章 結論與未來研究方向 110 5.1結論 110 5.2未來研究方向 110 參考文獻 112

    參考文獻
    [1]R. J. Veillette, J. V. Medanic, and W. R. Perkins, “Design of reliable control systems,” IEEE Transactions on Automatic Control, vol. 37, no. 3, pp. 290-304, 1992.

    [2]J. Huang and C.-F. Lin, “Numerical approach to computing nonlinear control laws,” Journal of Guidance, Control, and Dynamics, vol. 18, no. 5, pp. 989-994, 1995.

    [3]Y.-W. Liang, D.-C. Liaw, and T.-C. Lee, “Reliable control of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 4, pp. 706-710, 2000.

    [4]G.-H. Yang, J. L. Wang, and Y. C. Soh, “Reliable guaranteed cost control for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 11, pp. 2188-2192, 2000.

    [5]F. Liao, J. L. Wang, and G.-H. Yang, “Reliable robust flight tracking control: An LMI approach,” IEEE Transactions on Control Systems Technology, vol. 10, no. 1, pp. 76-89, 2002.

    [6]Y.-W. Liang and S.-D. Xu, “Reliable control of nonlinear systems via variable structure scheme,” IEEE Transactions on Automatic Control, vol. 51, no. 10, pp. 1721-1725, 2006.

    [7]Y.-W. Liang, S.-D. Xu, and C.-L. Tsai, “Study of VSC reliable designs withapplication to spacecraft attitude stabilization,” IEEE Transactions on Control Systems Technology, vol. 15, no. 2, pp. 332-338, 2007.

    [8]M. L. Corradini and G. Orlando, “Actuator failure identification and compensation through sliding modes,” IEEE Transactions on Control Systems Technology, vol. 15, no. 1, pp. 184-190, 2007.

    [9]Y.-W. Liang, S.-D. Xu, and L.-W. Ting, “ T-S model-based SMC reliable design for a class of nonlinear control systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3286-3295, 2009.

    [10]X. Hu, H. Gao, H. R. Karimi, L. Wu, and C. Hu, “Fuzzy reliable tracking control for flexible air-breathing hypersonic vehicles,” International Journal of Fuzzy Systems, vol. 13, no. 4, pp. 323-334, 2011.

    [11]S.-H. Yoon, Y.-D. Kim, and S.-H. Park, “Constrained adaptive backstepping controller design for aircraft landing in wind disturbance and actuator stuck,” International Journal of Aeronautical and Space Sciences, vol. 13, no. 1, pp. 74-89, 2012.

    [12]M. Chadli, S. Aouaouda, H. R. Karimi, and P. Shi, “Robust fault tolerant tracking controller design for a VTOL aircraft,” Journal of the Franklin Institute, 2013.

    [13]Y. Jin, J. Fu, Y. Zhang, and Y. Jing, “Reliable control of a class of switched cascade nonlinear systems with its application to flight control,” Nonlinear Analysis: Hybrid Systems, vol. 11, no. 1, pp. 11-21, 2014.

    [14]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-15, no. 1, pp. 116-132, 1985.

    [15]K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Hoboken, NJ: Wiley, 2001.

    [16]F.-H. Hsiao, C.-W. Chen, Y.-W. Liang, S.-D. Xu, and W.-L. Chiang, “T-S controller for nonlinear interconnected systems with multiple time delays,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 9, pp. 1883-1893, 2005.

    [17]P. Quinones-Reyes, H. Benitez-Perez, F. Cardenas-Flores, and F. Garcia-Nocetti, “An approximation for reconfigurable fuzzy Takagi-Sugeno networked control,” IEEE Potentials, vol. 27, no. 6, pp. 38-44, 2008.

    [18]T. Chen and Y.-C. Wang, “A fuzzy set approach for evaluating and enhancing the mid-term competitiveness of a semiconductor factory,” Fuzzy Sets and Systems, vol. 160, no. 5, pp. 569-585, 2009.

    [19]B.-S. Chen and C. H. Wu, “Robust optimal reference tracking design method for stochastic synthetic biology system: T-S fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 6, pp. 1144-1159, 2010.

    [20]M.-C. Chen, W.-Y. Wang, S.-F. Su, and Y.-H. Chen, “Robust T-S fuzzy neural control of uncertain active suspension systems,” International Journal of Fuzzy Systems, vol. 12, no. 4, pp. 321-329, 2010.

    [21]R. Berrios, F. Nunez, and A. Cipriano, “Fault tolerant measurement system based on Takagi-Sugeno fuzzy models for a gas turbine in as combined cycle power plant,” Fuzzy Sets and Systems, vol. 174, no. 1, pp. 114-130, 2011.

    [22]B.-S. Chen, W.-H. Chen, and W. Zhang, “Robust filter for nonlinear stochastic partial differential systems in sensor signal processing: fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 957-970, 2012.

    [23]H. R. Karimi and M. Chadli, “Robust observer design for Takagi-Sugeno fuzzy systems with mixed neutral and discrete delays and unknown inputs,” Mathematical Problems in Engineering, 2012, 13 pages, 2012.

    [24]D. Xu, B. Jiang, and P. Shi, “Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model,” International Journal of Applied Mathematics and Computer Science, vol. 22, no. 1, pp. 183-196, 2012.

    [25]N. T. Vu, D.-Y. Yu, H. H. Choi, and J.-W. Jung, “T-S fuzzy model based sliding-mode control for surface mounted permanent magnet synchronous motors considering uncertainties,” IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4281-4291, 2013.

    [26]H. Han, “Adaptive fuzzy sliding-mode control for a class of T-S fuzzy models,” IEEJ Transactions on Electronics, Information and Systems, vol. 133, no. 2, pp. 334-341, 2013.

    [27]M. Chadli and H. R. Karimi, “Robust observer design for unknown inputs Takagi-Sugeno models,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 158-164, 2013.

    [28]R. A. Decarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: A tutorial,” Proceedings of the IEEE, vol. 76, no. 3, pp. 212-232, 1988.

    [29]H. K. Khalil. Nonlinear Systems. 3rd ed., Prentice Hall, 2002.

    [30]N. K. Lincoln and S. M. Veres, “Application of discrete time sliding mode control to a spacecraft in 6DoF with parameter identification,” International Journal of Control, vol. 83, no. 11, pp. 2217-2231, 2010.

    [31]Y.-W. Liang, L.-W. Ting, and L.-G. Lin, “Study of reliable control via an integral-type sliding mode control scheme,” IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3063-3068, 2012.

    [32]B. Wu, D. Wang, and E. K. Poh, “Decentralized sliding-mode control for attitude synchronization in spacecraft formation,” International Journal of Robust and Nonlinear Control, vol. 23, no. 11, pp. 1183-1197, 2013.

    [33]T. Li, Y. Zhang, and B. W. Gordon, “Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 227, no. 1, pp. 12-23, 2013.

    [34]M. Zak, “Terminal attractors for addressable memory in neural networks,” Physic Letters, vol. 33, no. 12, pp. 18-22, 1988.

    [35]M. Zak, “Terminal actuators in neural networks,” Neural Networks, vol. 2, pp. 259-274, 1989.

    [36]Z. Man and X.-H. Yu, “Terminal sliding mode control for MIMO Linear systems,” Proceedings of the IEEE Conference on Decision and Control, Kobe, Japan, December 11-13, 1996, vol. 4, pp. 4619-4624.

    [37]K. S. Khoo, Z. Man, and S. Zhao, “Terminal sliding mode control for MIMO T-S fuzzy systems,” International Conference on Information, Communications and Signal Processing, Singapore, December 10-13, 2007.

    [38]H. Liu and J.- F. Li, “Terminal sliding mode control for spacecraft formation flying,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3 pp. 835-846, 2009.

    [39]A.-M. Zou, K.-D. Kumar, Z.-G. Hou, and X. Liu, “Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 41, no. 4, pp. 950-963, 2011.

    [40]Z. Lin, X. Yan, Y. Hao, and Z. Su, “Fault tolerant control for spacecraft based on adaptive fast terminal sliding mode,” Proceedings 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, Jilin, China, August 19-22, 2011, pp. 2151-2155.

    [41]F. Zhang and G.-R. Duan, “Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment,” IET Control Theory and Applications, vol. 6, no. 9, pp. 1192-1204, 2012.

    [42]H. Du and S. Li, “Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique,” International Journal of Modelling, Identification and Control , vol. 16, no. 4, pp. 327-333, 2012.

    [43]Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159-2167, 2002.

    [44]C.-K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 849-859, 2006.

    [45]M.-L. Jin, J. Lee, and P.-H. Chang, “Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3593-3601, 2009.

    [46]G. Godard and K.-D. Kumar, “Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques,” Journal of Guidance, Control, and Dynamics, vol. 33, no. 3, pp. 969-984, 2010.

    [47]S.-Y. Chen and F.-J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 636-643, 2011.

    [48]L. Cao, X.-Q. Chen, and T. Sheng, “Fault tolerant small satellite attitude control using adaptive nonsingular terminal sliding mode,” Advances in Space Research, vol. 51, no. 12, pp. 2374-2393, 2013.

    [49]L.-X. Wang, Adaptive Fuzzy System and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.

    [50]K. Tanaka and H.-O. Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. Hoboken, NJ: Wiley, 2001.

    [51]C.-C. Hsiao, S.-F. Su, T.-T. Lee, and C.-C. Chen, “Hybrid compensation control for affine TSK fuzzy control systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, pp. 1865-1873, 2004.

    [52]R.-J. Wang, W.-W. Lin, and W.-J. Wang, “Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, pp. 1288-1292, 2004.

    [53]Optimization Toolbox User’s Guide, for Use With MATLAB, Mathworks Ins., Natick, MA, 2001. [Online]. Available: http://www.mathworks.com

    無法下載圖示 全文公開日期 2018/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE