簡易檢索 / 詳目顯示

研究生: 謝中明
Zhong-Ming Xie
論文名稱: 理論計算探討二胺功能化金屬有機框架在鹼性環境下對於捕獲二氧化碳的影響
A theoretical study of alkaline effects on the capture of CO2 molecules by diamine-appended metal-organic frameworks
指導教授: 洪儒生
Lu-Sheng Hong
江志強
Jyh-Chiang Jiang
口試委員: 洪儒生
Lu-Sheng Hong
江志強
Jyh-Chiang Jiang
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 84
中文關鍵詞: 二氧化碳捕獲金屬有機框架鹼性環境微觀動力學模擬密度泛函理論
外文關鍵詞: CO2 capture, Metal-organic framework, Alkaline environment, Microkinetic simulation, DFT
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業化的迅速發展和擴張,導致了大量的二氧化碳排放,如何有效捕捉二氧化碳將成為當今的首要之務。因此,本研究採用密度泛函理論 (DFT) 並結合動力學模擬(microkinetic simulations)來探索二氧化碳在有機金屬框架(mmen-Mg2(dobpdc))中的捕獲機制。DFT計算結果指出,二氧化碳吸附在mmen-Mg2(dobpdc)的外胺上有著動力學優勢;動力學模擬顯示二氧化碳在mmen-Mg2(dobpdc)的脫附溫度與實驗結果一致,證實了本研究提出的捕獲機制具有一定的可靠性。此外,我們探討了在鹼性環境中對於二氧化碳捕獲機制的影響,計算結果顯示二氧化碳吸附在去質子化的內胺或是外胺位點時,二氧化碳吸附的動力學與熱力學皆比中性環境下有優勢,故得知二氧化碳在鹼性環境下吸附在mmen-Mg2(dobpdc)將變得更加快速且有利。另一方面,本研究也確認了mmen-Sc2(dobpdc)在鹼性環境下的反應機制,計算結果指出mmen-Sc2(dobpdc)與mmen-Mg2(dobpdc)在鹼性環境下皆對於二氧化碳吸附具有動力學優勢與熱力學穩定性。最後我們探討mmen-Mg2(dobpdc)與mmen-Sc2(dobpdc)在鹼性環境下對於理論二氧化碳捕獲容量的影響,結果得知mmen-Mg2(dobpdc)與mmen-Sc2(dobpdc)在鹼性環境下的理論二氧化碳捕獲容量將能達到中性環境下的2倍,這表明鹼性環境的影響不僅降低了二氧化碳吸附的活化能,而且顯著增加了mmen-Mg2(dobpdc)和mmen-Sc2(dobpdc)的二氧化碳捕獲容量。我們希望這項工作將促進胺官能化金屬有機框架的進一步改進和開發,以有效捕獲二氧化碳。


    The development of an energy-efficient CO2 capture process is highly desirable to mitigate CO2 emissions from fossil fuel combustion. Herein, in this study, we performed density functional theory (DFT) calculations combined with microkinetic simulations to explore the mechanism of CO2 capture in mmen-Mg2(dobpdc) (mmen = N,N'-dimethylethylenediamine; dobpdc4− = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate). The DFT results indicate that CO2 adsorption on the outer amine of the mmen molecule is more kinetically favorable than that on the inner amine. Besides, the microkinetic simulation results show that the required temperature for CO2 desorption from the dual and outer amine sites is consistent with the experimental results, confirming the reliability of our promoted CO2 adsorption pathways in the mmen-Mg2(dobpdc). Furthermore, we investigated the effects of an alkaline environment on the CO2 capture mechanism in mmen-Mg2(dobpdc). The calculated results demonstrate that CO2 adsorption on the deprotonated inner and outer amines exhibits better kinetic favorability and thermodynamic stability than the neutral environment.
    We also evaluated the alkaline effects of the CO2 adsorption mechanism on the deprotonated inner and outer amine sites of mmen-Sc2(dobpdc) for comparison with the mmen-Mg2(dobpdc) system. The calculations show that mmen-Sc2(dobpdc) also exhibits kinetical and thermodynamic favorability towards CO2 capture in the alkaline environment. Finally, we calculated the theoretical CO2 capture capacity in the mmen-Mg2(dobpdc) and mmen-Sc2(dobpdc) systems. Our results reveal that mmen-Mg2(dobpdc) and mmen-Sc2(dobpdc) show a double theoretical CO2 capture capacity in the alkaline environment compared to the neutral environment. It suggests that the effects of the alkaline environment not only reduces the activation barrier of CO2 adsorption on the mmen molecule but also significantly increases CO2 capacities in the mmen-Mg2(dobpdc) and mmen-Sc2(dobpdc) systems. We hope this work could provide inspired insights into further improvement and development of amine-functionalized metal-organic frameworks for efficient CO2 capture.

    Abstract I 摘要 IV 致謝 V Contents VI List of Figures VII List of Tables X Chapter 1. Introduction 1 1.1 CO2 as a greenhouse gas 1 1.2 CO2 capture technology 2 1.2.1 Pre-Combustion 3 1.2.2 Oxy-Combustion 5 1.2.3 Post-Combustion 6 1.3 Solid sorbents for CO2 capture 7 1.4 MOFs for CO2 capture 9 1.5 Present study 12 Chapter 2. Theoretical Methodology 14 2.1 Density functional theory calculation 14 2.2 Microkinetic modeling 17 2.3 Model 19 2.3.1 M2(dobpdc) unit cell 19 2.3.2 mmen-M2(dobpdc) 22 Chapter 3. Results and Discussion 23 3.1 CO2 capture in a neutral environment 23 3.1.1 Reaction mechanism of inner-amine pathway 24 3.1.2 Reaction mechanism of outer-amine pathway 30 3.1.3 Microkinetic simulation 34 3.1.4 Dual-amine pathway 40 3.2 CO2 capture in an alkaline environment 44 3.2.1 Reaction mechanism on mmen-Mg2(dobpdc) 45 3.2.2 Reaction mechanism on mmen-Sc2(dobpdc) 51 3.2.3 CO2 adsorption capacity 55 Chapter 4. Conclusion 61 References 63 Appendix 71

    1. Change, I. C., The physical science basis. Cambridge Univ. Press: 2013.
    2. Cox, P. M.; Betts, R. A.; Jones, C. D.; Spall, S. A.; Totterdell, I. J., Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408 (6809), 184-187.
    3. Orr, J. C.; Fabry, V. J.; Aumont, O.; Bopp, L.; Doney, S. C.; Feely, R. A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F., Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437 (7059), 681-686.
    4. Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L., IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press: 2005.
    5. Chu, S., Carbon capture and sequestration. American Association for the Advancement of Science: 2009; Vol. 325, pp 1599-1599.
    6. Haszeldine, R. S., Carbon capture and storage: how green can black be? Science 2009, 325 (5948), 1647-1652.
    7. Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P., Carbon capture and storage update. Energy & Environmental Science 2014, 7 (1), 130-189.
    8. Nanda, S.; Reddy, S. N.; Mitra, S. K.; Kozinski, J. A., The progressive routes for carbon capture and sequestration. Energy Science & Engineering 2016, 4 (2), 99-122.
    9. Kainiemi, L.; Eloneva, S.; Toikka, A.; Levänen, J.; Järvinen, M., Opportunities and obstacles for CO2 mineralization: CO2 mineralization specific frames in the interviews of Finnish carbon capture and storage (CCS) experts. Journal of Cleaner Production 2015, 94, 352-358.
    10. Celia, M. A., Geological storage of captured carbon dioxide as a large‐scale carbon mitigation option. Water Resources Research 2017, 53 (5), 3527-3533.
    11. Goldthorpe, S., Potential for very deep ocean storage of CO2 without ocean acidification: a discussion paper. Energy Procedia 2017, 114, 5417-5429.
    12. Gaurina-Međimurec, N.; Mavar, K. N., Carbon capture and storage (CCS): geological sequestration of CO2. CO2 Sequestration 2019, 1-21.
    13. Minchener, A. J., Coal gasification for advanced power generation. Fuel 2005, 84 (17), 2222-2235.
    14. Higman, C., Gasification. In Combustion engineering issues for solid fuel systems, Elsevier: 2008; pp 423-468.
    15. Nord, L. O.; Anantharaman, R.; Bolland, O., Design and off-design analyses of a pre-combustion CO2 capture process in a natural gas combined cycle power plant. International Journal of Greenhouse Gas Control 2009, 3 (4), 385-392.
    16. Bell, D. A.; Towler, B. F.; Fan, M., Coal gasification and its applications. William Andrew: 2010.
    17. Romano, M. C.; Chiesa, P.; Lozza, G., Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes. International Journal of Greenhouse Gas Control 2010, 4 (5), 785-797.
    18. Scholes, C. A.; Smith, K. H.; Kentish, S. E.; Stevens, G. W., CO2 capture from pre-combustion processes—Strategies for membrane gas separation. International Journal of Greenhouse Gas Control 2010, 4 (5), 739-755.
    19. Padurean, A.; Cormos, C.-C.; Agachi, P.-S., Pre-combustion carbon dioxide capture by gas–liquid absorption for Integrated Gasification Combined Cycle power plants. International Journal of Greenhouse Gas Control 2012, 7, 1-11.
    20. Mladenović, M.; Paprika, M.; Marinković, A., Denitrification techniques for biomass combustion. Renewable and Sustainable Energy Reviews 2018, 82, 3350-3364.
    21. Rostrup-Nielsen, J. R., Catalytic steam reforming. In Catalysis, Springer: 1984; pp 1-117.
    22. Rostrup-Nielsen, J. R., Production of synthesis gas. Catalysis today 1993, 18 (4), 305-324.
    23. Sharma, A.; Takanohashi, T.; Morishita, K.; Takarada, T.; Saito, I., Low temperature catalytic steam gasification of HyperCoal to produce H2 and synthesis gas. Fuel 2008, 87 (4-5), 491-497.
    24. Rauch, R.; Hrbek, J.; Hofbauer, H., Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdisciplinary Reviews: Energy and Environment 2014, 3 (4), 343-362.
    25. De Deken, J.; Devos, E.; Froment, G., Steam reforming of natural gas: intrinsic kinetics, diffusional influences, and reactor design. ACS Publications: 1982.
    26. Clarke, S. H.; Dicks, A. L.; Pointon, K.; Smith, T. A.; Swann, A., Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells. Catalysis Today 1997, 38 (4), 411-423.
    27. Ming, Q.; Healey, T.; Allen, L.; Irving, P., Steam reforming of hydrocarbon fuels. Catalysis today 2002, 77 (1-2), 51-64.
    28. Newsome, D. S., The water-gas shift reaction. Catalysis Reviews Science and Engineering 1980, 21 (2), 275-318.
    29. RJ, B. S.; Loganathan, M.; Shantha, M. S., A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering 2010, 8 (1).
    30. Unde, R. B., Kinetics and reaction engineering aspects of syngas production by the heterogeneously catalysed reverse water gas shift reaction. Universitaet Bayreuth (Germany): 2012.
    31. Chen, W.-H.; Chen, C.-Y., Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Applied Energy 2020, 258, 114078.
    32. Thompson, A. W.; Bernstein, I., The role of metallurgical variables in hydrogen-assisted environmental fracture. Advances in corrosion science and technology 1980, 53-175.
    33. Ramachandran, R.; Menon, R. K., An overview of industrial uses of hydrogen. International journal of hydrogen energy 1998, 23 (7), 593-598.
    34. Trimm, D., Minimisation of carbon monoxide in a hydrogen stream for fuel cell application. Applied Catalysis A: General 2005, 296 (1), 1-11.
    35. Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources 2007, 165 (2), 739-756.
    36. Forsberg, C. W., Future hydrogen markets for large-scale hydrogen production systems. International Journal of Hydrogen Energy 2007, 32 (4), 431-439.
    37. Ritter, J. A.; Ebner, A. D., State‐of‐the‐art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries. Separation Science and Technology 2007, 42 (6), 1123-1193.
    38. Cormos, C.-C., Evaluation of power generation schemes based on hydrogen-fuelled combined cycle with carbon capture and storage (CCS). International Journal of Hydrogen Energy 2011, 36 (5), 3726-3738.
    39. Giddey, S.; Badwal, S.; Kulkarni, A., Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy 2013, 38 (34), 14576-14594.
    40. Seo, Y.; Kang, S.-P., Enhancing CO2 separation for pre-combustion capture with hydrate formation in silica gel pore structure. Chemical Engineering Journal 2010, 161 (1-2), 308-312.
    41. Babu, P.; Linga, P.; Kumar, R.; Englezos, P., A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261-279.
    42. Sohaib, Q.; Muhammad, A.; Younas, M.; Rezakazemi, M., Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures. Separation and Purification Technology 2020, 241, 116677.
    43. Wall, T. F., Combustion processes for carbon capture. Proceedings of the combustion institute 2007, 31 (1), 31-47.
    44. Perrin, N.; Dubettier, R.; Lockwood, F.; Tranier, J.-P.; Bourhy-Weber, C.; Terrien, P., Oxycombustion for coal power plants: Advantages, solutions and projects. Applied Thermal Engineering 2015, 74, 75-82.
    45. Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B., NO emission during oxy-fuel combustion of lignite. Industrial & Engineering Chemistry Research 2008, 47 (6), 1835-1845.
    46. Buhre, B. J.; Elliott, L. K.; Sheng, C.; Gupta, R. P.; Wall, T. F., Oxy-fuel combustion technology for coal-fired power generation. Progress in energy and combustion science 2005, 31 (4), 283-307.
    47. Hecht, E. S.; Shaddix, C. R.; Molina, A.; Haynes, B. S., Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char. Proceedings of the combustion institute 2011, 33 (2), 1699-1706.
    48. Nemitallah, M. A.; Habib, M. A.; Badr, H. M.; Said, S. A.; Jamal, A.; Ben-Mansour, R.; Mokheimer, E. M.; Mezghani, K., Oxy-fuel combustion technology: current status, applications, and trends. International Journal of Energy Research 2017, 41 (12), 1670-1708.
    49. Lu, J.; Cao, H.; Li, J., Energy and cost estimates for separating and capturing CO2 from CO2/H2O using condensation coupled with pressure/vacuum swing adsorption. Energy 2020, 202, 117604.
    50. Fu, C.; Gundersen, T., Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes. Energy 2012, 44 (1), 60-68.
    51. Pavlish, J. H.; Sondreal, E. A.; Mann, M. D.; Olson, E. S.; Galbreath, K. C.; Laudal, D. L.; Benson, S. A., Status review of mercury control options for coal-fired power plants. Fuel processing technology 2003, 82 (2-3), 89-165.
    52. Tzimas, E.; Peteves, S., Controlling Carbon Emissions: The Option of Carbon Seqestration. Office for Official Publications of the European Communities Luxembourg: 2003.
    53. Van Straelen, J.; Geuzebroek, F.; Goodchild, N.; Protopapas, G.; Mahony, L., CO2 capture for refineries, a practical approach. International Journal of Greenhouse Gas Control 2010, 4 (2), 316-320.
    54. Merkel, T. C.; Wei, X.; He, Z.; White, L. S.; Wijmans, J.; Baker, R. W., Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Industrial & Engineering Chemistry Research 2013, 52 (3), 1150-1159.
    55. Veawab, A.; Tontiwachwuthikul, P.; Aroonwilas, A.; Chakma, A. In Performance and cost analysis for CO2 capture from flue gas streams: absorption and regeneration aspects, Greenhouse Gas Control Technologies-6th International Conference, Elsevier: 2003; pp 127-132.
    56. Gabrielsen, J.; Svendsen, H. F.; Michelsen, M. L.; Stenby, E. H.; Kontogeorgis, G. M., Experimental validation of a rate-based model for CO2 capture using an AMP solution. Chemical Engineering Science 2007, 62 (9), 2397-2413.
    57. Wilcox, J., Carbon capture. Springer Science & Business Media: 2012.
    58. Forse, A. C.; Milner, P. J., New chemistry for enhanced carbon capture: beyond ammonium carbamates. Chemical Science 2021, 12 (2), 508-516.
    59. Maddox, R. N., Gas conditioning and processing. Vol. 4: gas and liquid sweetening. 1982.
    60. Astaria, G.; Savage, D. W.; Bisio, A., Gas treating with chemical solvents. 1983.
    61. Kohl, A. L.; Nielsen, R., Gas purification. Elsevier: 1997.
    62. Reichle, D.; Houghton, J.; Kane, B.; Ekmann, J. Carbon sequestration research and development; Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States); National …: 1999.
    63. Oyenekan, B. A.; Rochelle, G. T., Alternative stripper configurations for CO2 capture by aqueous amines. AIChE Journal 2007, 53 (12), 3144-3154.
    64. Choi, S.; Drese, J. H.; Jones, C. W., Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem: Chemistry & Sustainability Energy & Materials 2009, 2 (9), 796-854.
    65. Creamer, A. E.; Gao, B., Carbon-based adsorbents for postcombustion CO2 capture: a critical review. Environmental science & technology 2016, 50 (14), 7276-7289.
    66. Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M., The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials 2017, 2 (8), 1-16.
    67. Zeng, Y.; Zou, R.; Zhao, Y., Covalent organic frameworks for CO2 capture. Advanced Materials 2016, 28 (15), 2855-2873.
    68. Zou, L.; Sun, Y.; Che, S.; Yang, X.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S., Porous organic polymers for post‐combustion carbon capture. Advanced materials 2017, 29 (37), 1700229.
    69. Samanta, A.; Zhao, A.; Shimizu, G. K.; Sarkar, P.; Gupta, R., Post-combustion CO2 capture using solid sorbents: a review. Industrial & Engineering Chemistry Research 2012, 51 (4), 1438-1463.
    70. Lee, S.-Y.; Park, S.-J., A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry 2015, 23, 1-11.
    71. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R., Carbon dioxide capture in metal–organic frameworks. Chemical reviews 2012, 112 (2), 724-781.
    72. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
    73. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to metal–organic frameworks. ACS Publications: 2012; Vol. 112, pp 673-674.
    74. O'Keeffe, M.; Eddaoudi, M.; Li, H.; Reineke, T.; Yaghi, O. M., Frameworks for extended solids: geometrical design principles. Journal of Solid State Chemistry 2000, 152 (1), 3-20.
    75. Shen, K.; Chen, X.; Chen, J.; Li, Y., Development of MOF-derived carbon-based nanomaterials for efficient catalysis. Acs Catalysis 2016, 6 (9), 5887-5903.
    76. Kitagawa, S., Metal–organic frameworks (MOFs). Chemical Society Reviews 2014, 43 (16), 5415-5418.
    77. DeCoste, J. B.; Peterson, G. W., Metal–organic frameworks for air purification of toxic chemicals. Chemical Reviews 2014, 114 (11), 5695-5727.
    78. Liu, Y.; Wang, Z. U.; Zhou, H. C., Recent advances in carbon dioxide capture with metal‐organic frameworks. Greenhouse Gases: Science and Technology 2012, 2 (4), 239-259.
    79. McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R., Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2 (dobpdc). Journal of the American Chemical Society 2012, 134 (16), 7056-7065.
    80. Siegelman, R. L.; McDonald, T. M.; Gonzalez, M. I.; Martell, J. D.; Milner, P. J.; Mason, J. A.; Berger, A. H.; Bhown, A. S.; Long, J. R., Controlling cooperative CO2 adsorption in diamine-appended Mg2 (dobpdc) metal–organic frameworks. Journal of the American Chemical Society 2017, 139 (30), 10526-10538.
    81. McDonald, T. M.; Mason, J. A.; Kong, X.; Bloch, E. D.; Gygi, D.; Dani, A.; Crocella, V.; Giordanino, F.; Odoh, S. O.; Drisdell, W. S., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 2015, 519 (7543), 303-308.
    82. Milner, P. J.; Siegelman, R. L.; Forse, A. C.; Gonzalez, M. I.; Runčevski, T. e.; Martell, J. D.; Reimer, J. A.; Long, J. R., A diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism. Journal of the American Chemical Society 2017, 139 (38), 13541-13553.
    83. Dinakar, B.; Forse, A. C.; Jiang, H. Z.; Zhu, Z.; Lee, J.-H.; Kim, E. J.; Parker, S. T.; Pollak, C. J.; Siegelman, R. L.; Milner, P. J., Overcoming Metastable CO2 Adsorption in a Bulky Diamine-Appended Metal–Organic Framework. Journal of the American Chemical Society 2021, 143 (37), 15258-15270.
    84. Siegelman, R. L.; Milner, P. J.; Forse, A. C.; Lee, J.-H.; Colwell, K. A.; Neaton, J. B.; Reimer, J. A.; Weston, S. C.; Long, J. R., Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal–organic framework. Journal of the American Chemical Society 2019, 141 (33), 13171-13186.
    85. Vlaisavljevich, B.; Odoh, S. O.; Schnell, S. K.; Dzubak, A. L.; Lee, K.; Planas, N.; Neaton, J. B.; Gagliardi, L.; Smit, B., CO 2 induced phase transitions in diamine-appended metal–organic frameworks. Chemical science 2015, 6 (9), 5177-5185.
    86. Lee, J.-H.; Siegelman, R. L.; Maserati, L.; Rangel, T.; Helms, B. A.; Long, J. R.; Neaton, J. B., Enhancement of CO 2 binding and mechanical properties upon diamine functionalization of M 2 (dobpdc) metal–organic frameworks. Chemical science 2018, 9 (23), 5197-5206.
    87. Pai, K. N.; Baboolal, J. D.; Sharp, D. A.; Rajendran, A., Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption. Separation and Purification Technology 2019, 211, 540-550.
    88. Drisdell, W. S.; Poloni, R.; McDonald, T. M.; Pascal, T. A.; Wan, L. F.; Pemmaraju, C. D.; Vlaisavljevich, B.; Odoh, S. O.; Neaton, J. B.; Long, J. R., Probing the mechanism of CO 2 capture in diamine-appended metal–organic frameworks using measured and simulated X-ray spectroscopy. Physical Chemistry Chemical Physics 2015, 17 (33), 21448-21457.
    89. Planas, N.; Dzubak, A. L.; Poloni, R.; Lin, L.-C.; McManus, A.; McDonald, T. M.; Neaton, J. B.; Long, J. R.; Smit, B.; Gagliardi, L., The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal–organic framework. Journal of the American Chemical Society 2013, 135 (20), 7402-7405.
    90. Zhang, H.; Yang, L.-M.; Ganz, E., Formation Mechanism of Ammonium Carbamate for CO2 Uptake in N, N′-Dimethylethylenediamine Grafted M2 (dobpdc). Langmuir 2020, 36 (46), 14104-14112.
    91. Hine, J.; Chou, Y., Rates of imine formation from acetone and some N, N-dimethyl vicinal diamines. The Journal of Organic Chemistry 1981, 46 (4), 649-652.
    92. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 1996, 6 (1), 15-50.
    93. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
    94. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical review B 1993, 47 (1), 558.
    95. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49 (20), 14251.
    96. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
    97. Blöchl, P. E., Projector augmented-wave method. Physical review B 1994, 50 (24), 17953.
    98. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b 1999, 59 (3), 1758.
    99. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical review B 1976, 13 (12), 5188.
    100. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics 2000, 113 (22), 9901-9904.
    101. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics 2010, 132 (15), 154104.
    102. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry 2011, 32 (7), 1456-1465.
    103. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C.; Sutton, A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B 1998, 57 (3), 1505.
    104. Kaloni, T. P., Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. The Journal of Physical Chemistry C 2014, 118 (43), 25200-25208.
    105. Filot, I. A.; Van Santen, R. A.; Hensen, E. J., The optimally performing Fischer–Tropsch catalyst. Angewandte Chemie 2014, 126 (47), 12960-12964.
    106. Milner, P. J.; Martell, J. D.; Siegelman, R. L.; Gygi, D.; Weston, S. C.; Long, J. R., Overcoming double-step CO 2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg 2 (dobpdc). Chemical science 2018, 9 (1), 160-174.
    107. Atkins, P.; de Paula, J., Atkins’ physical chemistry. 8th edn. W. H. Freeman and Company, New York: 2006.
    108. Schwalbe, C. H., June Sutor and the C–H··· O hydrogen bonding controversy. Crystallography reviews 2012, 18 (3), 191-206.
    109. Desiraju, G. R., The C− H··· O hydrogen bond: structural implications and supramolecular design. Accounts of Chemical Research 1996, 29 (9), 441-449.
    110. Wu, K.; Deng, S.; Li, S.; Zhao, R.; Yuan, X.; Zhao, L., Preliminary experimental study on the performance of CO2 capture prototype based on temperature swing adsorption (TSA). Carbon Capture Science & Technology 2022, 2, 100035.
    111. Van Santen, R.; Markvoort, A.; Filot, I.; Ghouri, M.; Hensen, E., Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics 2013, 15 (40), 17038-17063.

    無法下載圖示 全文公開日期 2024/08/23 (校內網路)
    全文公開日期 2024/08/23 (校外網路)
    全文公開日期 2024/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE