簡易檢索 / 詳目顯示

研究生: 李國銓
Kuo-Chuan Li
論文名稱: 偶氮官能基化的金屬有機骨架作為比例、比色與螢光化學傳感器應用於肉眼檢測含水介質中的重金屬離子
Azo-functionalized Metal-organic Framework as Ratiometric, Colorimetric and Fluorescent Chemosensor for Naked-eye Heavy Metal Ions Detection in Aqueous Media
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 陳俊傑
Jun-Jie Chen
許耀基
Yue-Ji Xu
鄭國光
Kuo-Kuang Cheng
鄭國彬
Kuo-Bin Cheng
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 132
中文關鍵詞: 金屬有機骨架肉眼感測器螢光探針比色法化學感測器合成後修飾分子內電荷轉移螯合增強螢光
外文關鍵詞: Metal-Organic Framework, Naked-eye sensor, Fluorescence probe, Colorimetric method, Chemosensor, Post-synthesis modification, Intramolecular charge transfer, Chelation-enhanced fluorescence
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業的發展,水中殘留的重金屬離子引發的環境及健康問題逐漸受到重視,如何快速且有效的檢測水中的重金屬成為環保及食安領域的重要課題。然而,現今多數的重金屬檢測仰賴精密儀器及繁瑣的人員訓練。近年來,不依靠精密儀器進行的樣品檢測因為限制較少、操作簡便而備受矚目。比色傳感檢測正是具備簡便、快速等優點的重金屬檢測方法。此方法不僅具有高辨識度與極低的設備需求,同時也無須任何專業訓練即可操作。
    金屬有機骨架(MOFs)因其奈米尺度的粒徑、可調節的結構與孔徑大小和極大的比表面積而在吸附、催化、傳感及藥物輸送等領域有許多應用潛力。此外MOFs更可透過更換中心金屬簇或有機配體等方式產生各式各樣的性質變化。因此本篇論文透過對具有高度水穩定性的UiO-66-NH2進行合成後修飾,使其具備對鈷、鎳、銅金屬離子進行選擇性配位並達到肉眼比色傳感與螢光傳感的效果。
    本研究透過合成後修飾的方式,以咪唑對已合成的UiO-66-NH2藉由重氮偶聯進行表面的官能基修飾。經過修飾的UiO-66-Azo-Im具有分子內電荷轉移和螯合增強螢光效應,能和特定的金屬離子形成穩定的配位錯合物,進一步改變顏色、吸收光譜及發射光譜。此肉眼比色傳感試劑在純水及多數有機溶劑中能保持穩定,檢測極限可達10-5 M並對鈷、鎳、銅離子具有差異化顯色效果。此試劑亦可和纖維素等高分子製成複合材料,進一步拓展應用性。有望應用於污水或其他含水介質中重金屬離子的肉眼檢測。


    With the development of industry, environmental and health problems caused by residual heavy metal ions in water have gradually attracted attention. How to quickly and effectively detect heavy metals in water has become a big issue in environmental protection and food safety. Nowadays, most heavy metal detection relies on sophisticated instruments and tedious personnel training. In recent years, instrument-free analysis has been highly promoted since its fewer restrictions and easy operation. Colorimetric sensing is a simple and fast method for heavy metals detection. This method not only has high recognition and extremely low equipment requirements, but also can be operated without any professional training.
    Metal-organic frameworks (MOFs) have many potential applications in adsorption, catalysis, sensing, and drug delivery due to their nanoscale particle size, tunable structure and pore size, large specific surface area and so on. In addition, MOFs can produce various properties by replacing the central metal clusters or organic ligands. In this thesis, the post-synthesis modification of highly water-stable UiO-66-NH2 makes it selectively coordinate with cobalt, nickel and copper metal ions, achieving colorimetric sensing and fluorescence sensing.
    In this study, functional groups on synthesized UiO-66-NH2 were modified by diazo coupling with imidazole through post-synthesis modification. The modified UiO-66-Azo-Im has intramolecular charge transfer (ICT) and chelation-enhanced fluorescence (CHEF) effects, which can form stable coordination complexes with specific metal ions, and further change the color, absorption spectrum and emission spectrum. This naked eye colorimetric sensing reagent is stable in pure water and most organic solvents, with a detection limit of 10-5 M, and has differential color rendering effects for cobalt, nickel and copper ions. This reagent can also be made into a composite material with macromolecules such as cellulose to further expand its applicability. It is expected to be applied to the naked eye detection of heavy metal ions in sewage or other aqueous media.

    摘要 1 Abstract 3 目錄 7 第1章 前言 19 1.1. 研究背景 19 第2章 文獻回顧與原理 21 2.1. 重金屬離子的比色傳感 21 2.1.1. 鈷金屬的比色傳感 23 1. 基於希夫鹼結構的鈷金屬比色傳感 23 2. 基於香豆素結構的鈷金屬比色傳感 24 3. 基於喹啉結構的鈷金屬比色傳感 25 4. 基於染料的鈷金屬比色傳感 25 5. 基於金屬奈米粒子的鈷金屬比色傳感 26 6. 基於聚合物的鈷金屬比色傳感 26 7. 基於量子點的鈷金屬比色傳感 27 2.1.2. 鎳金屬的比色傳感 27 1. 基於希夫鹼的鎳金屬比色傳感 27 2. 基於染料的鎳金屬比色傳感 28 3. 基於金屬奈米粒子的鎳金屬比色傳感 29 2.1.3. 銅金屬的比色傳感 29 1. 基於希夫鹼的銅金屬比色傳感 29 2. 基於香豆素的銅金屬比色傳感 30 3. 基於喹啉的銅金屬比色傳感 30 4. 基於纖維素的銅金屬比色傳感 31 5. 基於聚合物的銅金屬比色傳感 31 6. 基於金屬奈米粒子的銅金屬比色傳感 32 7. 基於矽奈米粒子的銅金屬比色傳感 32 8. 基於金屬有機骨架的銅金屬比色傳感 33 2.2. 金屬有機骨架 34 2.2.1. 金屬有機骨架概述 34 2.2.2. 水穩定性金屬有機骨架 35 1. 高價數金屬離子和羧酸類配體組成的金屬羧酸鹽骨架 36 2. 低價數金屬離子和含氮配體組成的金屬唑鹽骨架 37 3. 使用疏水性配體或對MOFs表面做疏水性修飾 38 4. 與穩定性較高的材料製成複合材料 38 2.2.3. 金屬有機骨架的合成後修飾 39 2.2.4. 金屬有機骨架中的能量轉移 42 A. 來自有機配體的發射 42 B. 來自金屬中心的發射 43 C. 來自客體的發射 43 D. 來自電荷轉移的發射 44 2.2.5. 本研究中金屬有機骨架之能量轉移 46 壹、 檢測前分析 46 貳、 傳感機制分析 48 2.2.6. 金屬有機骨架在重金屬比色傳感的應用 51 2.2.7. 金屬有機骨架-羧甲基纖維素複合材料 53 2.3. 研究動機與目的 54 第3章 實驗與方法 56 3.1. 實驗藥品 56 3.2. 實驗設備及儀器 58 3.3. 實驗流程 60 3.4. 樣品製備 61 3.4.1. UiO-66-NH2 之合成 61 3.4.2. UiO-66-Azo-Im 之合成 61 3.4.3. 羧甲基纖維素薄膜(CCM) 之製備 63 3.4.4. UiO-66-NH2@CCM 之製備 64 3.4.5. UiO-66-Azo-Im@CCM 之製備 64 3.5. 分析方法 66 3.5.1. 場發射掃描式電子顯微鏡 (FE-SEM) 66 3.5.2. 粉末X光繞射儀 (PXRD) 66 3.5.3. 表面積及孔徑分析儀 (BET) 66 3.5.4. 600 MHz 固態核磁共振光譜儀 (600 MHz ssNMR) 67 3.5.5. 衰減全反射傅立葉紅外線光譜儀 (ATR-FTIR) 67 3.5.6. 熱重分析儀 (TGA) 67 3.5.7. 接觸角分析儀 (OCA) 68 3.5.8. 紫外光-可見光分析儀 (UV-Vis) 68 3.5.9. 螢光光譜儀 (Spectrofluorometer) 70 第4章 結果與討論 71 4.1. 鑑定與分析 71 4.1.1. 表面形貌與晶體結構 71 SEM 71 PXRD 73 4.1.2. 孔徑與比表面積 74 BET 74 4.1.3. 官能基與化學結構 76 600 MHz ssNMR 76 ATR-FTIR 78 4.1.4. 熱性質分析 80 TGA 80 4.1.5. 表面透濕性質分析 81 OCA 81 4.2. UiO-66-Azo-Im的比色傳感 82 4.2.1. 比色傳感的選擇性 82 4.2.2. 其他金屬離子對比色傳感的影響 84 4.2.3. pH值對比色傳感的影響 86 4.2.4. 檢出極限與定量極限 88 1. 鈷(Co2+) 88 2. 鎳(Ni2+) 91 3. 銅(Cu2+) 94 4.2.5. 締合常數 97 1. 鈷(Co2+) 97 2. 鎳(Ni2+) 98 3. 銅(Cu2+) 99 4.3. UiO-66-Azo-Im的螢光傳感 102 4.3.1. 螢光傳感的選擇性 102 4.3.2. 其他金屬離子對螢光傳感的影響 103 4.3.3. pH值對螢光傳感的影響 105 4.3.4. 檢出極限與定量極限 107 鈷(Co2+) 107 鎳(Ni2+) 109 銅(Cu2+) 111 4.3.5. 締合常數 114 鈷(Co2+) 114 鎳(Ni2+) 115 銅(Cu2+) 116 4.3.6. 量子產率 117 4.4. 纖維素複合薄膜試片 118 4.4.1. 試片對金屬離子的選擇性 118 4.4.2. 其他金屬離子對試片比色傳感的影響 119 4.4.3. 試片傳感效能檢驗 121 第5章 結論 122 第6章 參考文獻 124

    [1] C. LibreTexts.
    [2] T. U. o. Washington in Color, Vol.
    [3] P. Team in d-d Transitions: The Reason Behind Colored Complexes, Vol. 2022.
    [4] C. LibreTexts.
    [5] E. Drioli and L. Giorno, Encyclopedia of Membranes, 2016, p.
    [6] M. Jouyandeh, F. Tikhani, M. Shabanian, F. Movahedi, S. Moghari, V. Akbari, X. Gabrion, P. Laheurte, H. Vahabi and M. R. Saeb, Journal of Alloys and Compounds 2020, 829.
    [7] H. Hu, H. He, J. Zhang, X. Hou and P. Wu, Nanoscale 2018, 10, 5035-5046.
    [8] K. K. Tanabe and S. M. Cohen, Chem Soc Rev 2011, 40, 498-519.
    [9] D. Y. Heo, H. H. Do, S. H. Ahn and S. Y. Kim, Polymers (Basel) 2020, 12.
    [10] S. Alamgir, M. Mhahabubur Rhaman, I. Basaran, D. R. Powell and M. Alamgir Hossain, Polyhedron 2020, 187.
    [11] H. J. Jang, J. B. Chae, J. M. Jung, H. So and C. Kim, Bulletin of the Korean Chemical Society 2019, 40, 650-657.
    [12] D. Divya and S. Thennarasu, ChemistrySelect 2021, 6, 8299-8305.
    [13] Z. Liu, W. Wang, H. Xu, L. Sheng, S. Chen, D. Huang and F. Sun, Inorganic Chemistry Communications 2015, 62, 19-23.
    [14] D. Vashisht, K. Kaur, R. Jukaria, A. Vashisht, S. Sharma and S. K. Mehta, Sensors and Actuators B: Chemical 2019, 280, 219-226.
    [15] Y. J. Na, Y. W. Choi, G. R. You and C. Kim, Sensors and Actuators B: Chemical 2016, 223, 234-240.
    [16] L. L. Gao, S. P. Li, Y. Wang, W. N. Wu, X. L. Zhao, H. J. Li and Z. H. Xu, Spectrochim Acta A Mol Biomol Spectrosc 2020, 230, 118025.
    [17] G. Bartwal, K. Aggarwal and J. M. Khurana, Journal of Photochemistry and Photobiology A: Chemistry 2020, 394.
    [18] F. A. Abebe, C. S. Eribal, G. Ramakrishna and E. Sinn, Tetrahedron Letters 2011, 52, 5554-5558.
    [19] Z. Liu, X. Jia, P. Bian and Z. Ma, Analyst 2014, 139, 585-588.
    [20] K. Liu, P. Guo, L. Liu and X. Shi, Sensors and Actuators B: Chemical 2017, 250, 667-672.
    [21] H. Tavallali, G. Deilamy-Rad, A. Parhami and S. Z. Mousavi, J Photochem Photobiol B 2013, 125, 121-130.
    [22] S. M. Kang, S. C. Jang, G. Y. Kim, C. S. Lee, Y. S. Huh and C. Roh, Sensors (Basel) 2016, 16.
    [23] D. Xu, H. Chen, Q. Lin, Z. Li, T. Yang and Z. Yuan, RSC Advances 2017, 7, 16295-16301.
    [24] C. Karami and M. A. Taher, Plasmonics 2017, 13, 1315-1323.
    [25] J. Yang, W. Chen, Y. Ma, G. Bright, X. Jie, H. Zhao, H. Zhou and X. Jin, Dyes and Pigments 2022, 202.
    [26] A. H. Gore, D. B. Gunjal, M. R. Kokate, V. Sudarsan, P. V. Anbhule, S. R. Patil and G. B. Kolekar, ACS Appl Mater Interfaces 2012, 4, 5217-5226.
    [27] J. H. Kang, S. Y. Lee, H. M. Ahn and C. Kim, Sensors and Actuators B: Chemical 2017, 242, 25-34.
    [28] G. Yin, J. Yao, S. Hong, Y. Zhang, Z. Xiao, T. Yu, H. Li and P. Yin, Analyst 2019, 144, 6962-6967.
    [29] D. Peralta-Domínguez, M. Rodríguez, G. Ramos-Ortíz, J. L. Maldonado, M. A. Meneses-Nava, O. Barbosa-García, R. Santillan and N. Farfán, Sensors and Actuators B: Chemical 2015, 207, 511-517.
    [30] T. Nagae, S. Aikawa, K. Inoue and Y. Fukushima, Tetrahedron Letters 2018, 59, 3988-3993.
    [31] Y. Fukushima and S. Aikawa, Tetrahedron Letters 2019, 60, 675-680.
    [32] J. Feng, W. Jin, P. Huang and F. Wu, Journal of Nanoparticle Research 2017, 19.
    [33] L. Zhang, D. Huang, G. Yue, J. Zhu, L. Yang, L. Yang, W. Dan and P. Zhao, Chemical Physics Letters 2021, 784.
    [34] N. Mergu and V. K. Gupta, Sensors and Actuators B: Chemical 2015, 210, 408-417.
    [35] Z. Aydin and M. Keles, ChemistrySelect 2020, 5, 7375-7381.
    [36] G. J. Park, G. R. You, Y. W. Choi and C. Kim, Sensors and Actuators B: Chemical 2016, 229, 257-271.
    [37] D. Udhayakumari, S. Suganya, S. Velmathi and D. MubarakAli, J Mol Recognit 2014, 27, 151-159.
    [38] Q. Lin, P. Chen, J. Liu, Y.-P. Fu, Y.-M. Zhang and T.-B. Wei, Dyes and Pigments 2013, 98, 100-105.
    [39] Q. Wu, L. Ma, Y. Xu, D. Cao, R. Guan, Z. Liu and X. Yu, Inorganic Chemistry Communications 2016, 69, 7-9.
    [40] Y. Wang, W. Wan, S. Qiu, L. Luo, Y. Li, L. Guo, Z. Lin and G. Chen, Analytical Methods 2017, 9, 1727-1731.
    [41] L. Zhang, R. Wang, R. Liu, X. Du, R. Meng, L. Liu and J. Yao, Cellulose 2018, 25, 6947-6961.
    [42] B. Ram, S. Jamwal, S. Ranote, G. S. Chauhan and R. Dharela, ACS Applied Polymer Materials 2020, 2, 5290-5299.
    [43] Q. Xu, K. M. Lee, F. Wang and J. Yoon, Journal of Materials Chemistry 2011, 21.
    [44] B. Ding, Y. Si, X. Wang, J. Yu, L. Feng and G. Sun, Journal of Materials Chemistry 2011, 21.
    [45] Y. R. Ma, H. Y. Niu, X. L. Zhang and Y. Q. Cai, Chem Commun (Camb) 2011, 47, 12643-12645.
    [46] Y. Ye, M. Lv, X. Zhang and Y. Zhang, RSC Advances 2015, 5, 102311-102317.
    [47] A. Jeevika and D. Ravi Shankaran, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 461, 240-247.
    [48] B. Singh, J. Lee, H.-G. Kim, M.-H. Park and K. Kim, Toxicology and Environmental Health Sciences 2020, 12, 381-389.
    [49] J. X. Wu and B. Yan, Dalton Trans 2017, 46, 15080-15086.
    [50] J. Hou, P. Jia, K. Yang, T. Bu, S. Zhao, L. Li and L. Wang, ACS Appl Mater Interfaces 2022, 14, 13848-13857.
    [51] Z. Li, L. Wang, L. Qin, C. Lai, Z. Wang, M. Zhou, L. Xiao, S. Liu and M. Zhang, Chemosphere 2021, 285, 131432.
    [52] R. G. Parr and R. G. Pearson, Journal of the American Chemical Society 1983, 105, 7512-7516.
    [53] J. G. Nguyen and S. M. Cohen, Journal of the American Chemical Society 2010, 132, 4560-4561.
    [54] C. Yang, U. Kaipa, Q. Z. Mather, X. Wang, V. Nesterov, A. F. Venero and M. A. Omary, J Am Chem Soc 2011, 133, 18094-18097.
    [55] Z. Rao, K. Feng, B. Tang and P. Wu, ACS Appl Mater Interfaces 2017, 9, 2594-2605.
    [56] M. J. Neufeld, B. R. Ware, A. Lutzke, S. R. Khetani and M. M. Reynolds, ACS Appl Mater Interfaces 2016, 8, 19343-19352.
    [57] S. Yuan, J. S. Qin, C. T. Lollar and H. C. Zhou, ACS Cent Sci 2018, 4, 440-450.
    [58] M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, Chemistry of Materials 2010, 22, 6632-6640.
    [59] C. G. Piscopo, A. Polyzoidis, M. Schwarzer and S. Loebbecke, Microporous and Mesoporous Materials 2015, 208, 30-35.
    [60] Z. Wang and S. M. Cohen, Journal of the American Chemical Society 2007, 129, 12368-12369.
    [61] D. Jiang, L. L. Keenan, A. D. Burrows and K. J. Edler, Chem Commun (Camb) 2012, 48, 12053-12055.
    [62] E. H. Otal, M. L. Kim, M. E. Calvo, L. Karvonen, I. O. Fabregas, C. A. Sierra and J. P. Hinestroza, Chem Commun (Camb) 2016, 52, 6665-6668.
    [63] J. Aguilera-Sigalat and D. Bradshaw, Chem Commun (Camb) 2014, 50, 4711-4713.
    [64] M. Kim, J. F. Cahill, Y. Su, K. A. Prather and S. M. Cohen, Chem. Sci. 2012, 3, 126-130.
    [65] A. Demessence, D. M. D’Alessandro, M. L. Foo and J. R. Long, Journal of the American Chemical Society 2009, 131, 8784-8786.
    [66] J. Kim, J. S. Oh, K. C. Park, G. Gupta and C. Yeon Lee, Inorganica Chimica Acta 2019, 486, 69-73.
    [67] J. X. Wang, J. Yin, O. Shekhah, O. M. Bakr, M. Eddaoudi and O. F. Mohammed, ACS Appl Mater Interfaces 2022, 14, 9970-9986.
    [68] N. D. Rudd, H. Wang, E. M. Fuentes-Fernandez, S. J. Teat, F. Chen, G. Hall, Y. J. Chabal and J. Li, ACS Appl Mater Interfaces 2016, 8, 30294-30303.
    [69] S. Chand, M. Mondal, S. C. Pal, A. Pal, S. Maji, D. Mandal and M. C. Das, New Journal of Chemistry 2018, 42, 12865-12871.
    [70] Q. Zhang, J. Wang, A. M. Kirillov, W. Dou, C. Xu, C. Xu, L. Yang, R. Fang and W. Liu, ACS Appl Mater Interfaces 2018, 10, 23976-23986.
    [71] Y.-X. Sun, G. Guo, W.-M. Ding, W.-Y. Han, J. Li and Z.-P. Deng, CrystEngComm 2022, 24, 1358-1367.
    [72] H. Guo, X. Wang, N. Wu, M. Xu, M. Wang, L. Zhang and W. Yang, Anal Methods 2020, 12, 4058-4063.
    [73] N. Liu, J. Hao, L. Chen, Y. Song and L. Wang, Luminescence 2019, 34, 193-199.
    [74] M. Jiang, Y. G. Weng, Z. Y. Zhou, C. Y. Ge, Q. Y. Zhu and J. Dai, Inorg Chem 2020, 59, 10727-10735.
    [75] Y. Zhao, J. Wang, W. Zhu, L. Liu and R. Pei, Nanoscale 2021, 13, 4505-4511.
    [76] R. E. Sikma and S. M. Cohen, Angew Chem Int Ed Engl 2022, 61, e202115454.
    [77] Y. Wang, H. Lv, E. S. Grape, C. A. Gaggioli, A. Tayal, A. Dharanipragada, T. Willhammar, A. K. Inge, X. Zou, B. Liu and Z. Huang, J Am Chem Soc 2021, 143, 6333-6338.
    [78] M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. Houk, Chem Soc Rev 2009, 38, 1330-1352.
    [79] J. Nootem, R. Daengngern, C. Sattayanon, W. Wattanathana, S. Wannapaiboon, P. Rashatasakhon and K. Chansaenpak, Journal of Photochemistry and Photobiology A: Chemistry 2021, 415.
    [80] P. Wu, Q. Du, L. Chen, M. Yang, Y. Sun, H. Zhi, P. Dramou and H. He, Mikrochim Acta 2021, 188, 29.
    [81] W. Y. Li, S. Yang, Y. A. Li, Q. Y. Li, Q. Guan and Y. B. Dong, Dalton Trans 2019, 48, 16502-16508.
    [82] A. Radwan, I. M. El-Sewify, A. Shahat, H. M. E. Azzazy, M. M. H. Khalil and M. F. El-Shahat, ACS Sustainable Chemistry & Engineering 2020, 8, 15097-15107.
    [83] F. Rouhani, F. Rafizadeh-Masuleh and A. Morsali, Journal of Materials Chemistry A 2019, 7, 18634-18641.
    [84] X. Zhang, T. Xia, K. Jiang, Y. Cui, Y. Yang and G. Qian, Journal of Solid State Chemistry 2017, 253, 277-281.
    [85] F. Xu, W. Shang, M. Xuan, G. Ma and Z. Ben, Chemosphere 2022, 288, 132635.
    [86] T. Hashem, A. H. Ibrahim, C. Wöll and M. H. Alkordi, ACS Applied Nano Materials 2019, 2, 5804-5808.
    [87] H. X. Jin, H. P. Xu, N. Wang, L. Y. Yang, Y. G. Wang, D. Yu and X. K. Ouyang, Materials (Basel) 2019, 12.
    [88] K. Al-Adilee and H. A. K. Kyhoiesh, Journal of Molecular Structure 2017, 1137, 160-178.
    [89] G. Shi, C. Ruan, S. He, H. Pan, G. Chen, Y. Ma, H. Dai, X. Chen and X. Yang, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 613.
    [90] H.-B. Liu, H.-Y. Zhao, Z. Tong, Y. Zhang, B. Lan and J. Wang, Sensors and Actuators B: Chemical 2017, 239, 511-514.
    [91] K. Aich, S. Goswami, S. Das and C. D. Mukhopadhyay, RSC Advances 2015, 5, 31189-31194.
    [92] S. Sadeghi, M. Jafarzadeh, A. Reza Abbasi and K. Daasbjerg, New Journal of Chemistry 2017, 41, 12014-12027.
    [93] a) F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum, A. Lago, V. Guillerm, C. Hemsley, J. F. Eubank, M. Vishnuvarthan, F. Taulelle, P. Horcajada, A. Vimont, P. L. Llewellyn, M. Daturi, S. Devautour-Vinot, G. Maurin, C. Serre, T. Devic and G. Clet, Journal of Materials Chemistry A 2015, 3, 3294-3309; b) G. Mali in Looking into Metal-Organic Frameworks with Solid-State NMR Spectroscopy, 2016; c) X.-M. Li, J. Liu, C. Zhao, J.-L. Zhou, L. Zhao, S.-L. Li and Y.-Q. Lan, Journal of Materials Chemistry A 2019, 7, 25165-25171; d) S. Devautour-Vinot, G. Maurin, C. Serre, P. Horcajada, D. Paula da Cunha, V. Guillerm, E. de Souza Costa, F. Taulelle and C. Martineau, Chemistry of Materials 2012, 24, 2168-2177.

    無法下載圖示 全文公開日期 2032/09/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE