簡易檢索 / 詳目顯示

研究生: 陳迺仁
Nai-Ren Chen
論文名稱: 吸濕自驅動運行的 Ti3C2TX MXene 電動能源發電機
A Self-Operating Ti3C2TX MXene-Based Electrokinetic Energy Generator Driven by Moisture Adsorption
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 吳嘉文
Chia-Wen Wu
郭紹偉
Shiao-Wei Kuo
邱昱誠
Yu-Cheng Chiu
葉禮賢
Li-Hsien Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 123
中文關鍵詞: 離子傳輸電動能源轉換吸濕產電有機金屬框架二維材料毛細作用
外文關鍵詞: Ion transport, Electrokinetic energy conversion, Moisture-enabled power generation, Metal-organic framework (MOF), Capillary action, Two-dimensional material
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Acknowledgement...i 摘要...iv Abstract...v Table of content...vii List of Figures...x List of Table...xvii 1. Introduction...1 1.1. Preface...1 1.2 Literature review...5 1.3 Research motivation...18 1.3.1 Self-humidifying electric power generation device inspired by water transportation pathways in plants...18 1.3.2 Flexible self-humidifying high-efficiency clean electric power generation device...19 1.3.3 Important component of the self-humidifying high-efficiency clean electric power generation device: Conductive layer...20 1.3.4 Important component of the self-humidifying high-efficiency clean electric power generation device: Hygroscopic layer...21 2. Mechanism...22 2.1. Electrical double layer (EDL)...22 2.2. Electrokinetic effect...24 2.3 Electric Energy Conversion...25 3. Experimental Equipment and Methods...29 3.1 Experimental Chemicals and Equipment...29 3.1.1 Experimental chemicals...29 3.1.2 Experimental equipment...30 3.1.3 Setup of measuring instruments...33 3.1.4 Experimental structural analysis...34 3.2 Experimental method...37 3.2.1 Preparation process for organic metal framework MOF...37 3.2.2 Preparation process for 2D conductive materal...39 3.2.3 Preparation process for a novel self-operating electrokinetic energy generator...40 3.2.3 Experiment on power generation performance of novel self-operating electrokinetic energy generator...41 3.2.4 Experiment on electrical energy conversion and real power output of the novel self-operating electrokinetic energy generator...42 4. Results and discussions...44 4.1 A novel self-operating electrokinetic energy generator inspired by plant water circulation...44 4.2 Material analysis...44 4.2.1 2D conductive material analysis...44 4.2.2 Water-Harvesting MOF analysis...47 4.3 Device characterization analysis...48 4.4 Device power generation efficiency analysis...49 4.4.1 Function of individual layer...49 4.4.2 Water retention properties of MOF...50 4.4.3 Effects of magnesium chloride concentration...50 4.4.4 Effects of magnesium chloride coating length...51 4.4.5 Effects of membrane dimension...52 4.4.6 Effects of temperature...53 4.4.7 Effects of humidity...53 4.5 Analysis of the electrical energy output of the device...54 4.6 Analysis of Electric Power Output Results for Optimized Device Design...55 4.6.1 Dual-layer 2D conductive material coating...55 4.6.2 Surface modification by oxygen plasma treatment...55 4.6.3 Analysis of the power generation performance of a novel self-operating electrokinetic energy generator with optimized conductive layers...56 4.7 Analysis of long-term and high-efficiency application results...56 4.7.1 Long-term stability test...57 4.7.2 Charge-discharge rate...57 4.7.3 Power amplification and charging experiment on actual device...58 5. Conclusion...96 References...98

    (1) Eriksson, S.; Bernhoff, H.; Leijon, M., Evaluation of Different Turbine Concepts for Wind Power. Renewable Sustainable Energy Rev. 2008, 12, 1419-1434.
    (2) Bartle, A., Hydropower Potential and Development Activities. Energy Policy 2002, 30, 1231-1239.
    (3) Shahsavari, A.; Akbari, M., Potential of Solar Energy in Developing Countries for Reducing Energy-Related Emissions. Renewable Sustainable Energy Rev. 2018, 90, 275-291.
    (4) Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G., Biodiesel Production by Microalgal Biotechnology. Appl. Energy 2010, 87, 38-46.
    (5) Quoilin, S.; Van Den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V., Techno-Economic Survey of Organic Rankine Cycle (Orc) Systems. Renewable Sustainable Energy Rev. 2013, 22, 168-186.
    (6) Rourke, F. O.; Boyle, F.; Reynolds, A., Tidal Energy Update 2009. Appl. Energy 2010, 87, 398-409.
    (7) Chowdhury, M.; Rahman, K. S.; Selvanathan, V.; Nuthammachot, N.; Suklueng, M.; Mostafaeipour, A.; Habib, A.; Akhtaruzzaman, M.; Amin, N.; Techato, K., Current Trends and Prospects of Tidal Energy Technology. Environ. Dev. Sustain. 2021, 23, 8179-8194.
    (8) Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
    (9) Chang, C.-W.; Chu, C.-W.; Su, Y.-S.; Yeh, L.-H., Space Charge Enhanced Ion Transport in Heterogeneous Polyelectrolyte/Alumina Nanochannel Membranes for High-Performance Osmotic Energy Conversion. J. Mater. Chem. 2022, 10, 2867-2875.
    (10) Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L., Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean. Nano Energy 2021, 88, 106199.
    (11) Osterle, J., Electrokinetic Energy Conversion. J. Appl. Mech. 1964, 31, 161-164.
    (12) Burgreen, D.; Nakache, F., Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic Systems. J. Appl. Mech. 1965, 32, 675-679.
    (13) Van der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels. Nano Lett. 2006, 6, 2232-2237.
    (14) Bocquet, L.; Charlaix, E., Nanofluidics, from Bulk to Interfaces. Chem. Soc. Rev. 2010, 39, 1073-1095.
    (15) Wall, S., The History of Electrokinetic Phenomena. Curr. Opin. Colloid Interface Sci. 2010, 15, 119-124.
    (16) Delgado, A. V.; González-Caballero, F.; Hunter, R.; Koopal, L. K.; Lyklema, J., Measurement and Interpretation of Electrokinetic Phenomena (Iupac Technical Report). Pure Appl. Chem. 2005, 77, 1753-1805.
    (17) van der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels. Nano Lett. 2007, 7, 1022-1025.
    (18) Olthuis, W.; Schippers, B.; Eijkel, J.; Van Den Berg, A., Energy from Streaming Current and Potential. Sens. Actuators B Chem. 2005, 111, 385-389.
    (19) Yang, G.; Lei, W.; Chen, C.; Qin, S.; Zhang, L.; Su, Y.; Wang, J.; Chen, Z.; Sun, L.; Wang, X., Ultrathin Ti3C2TX (MXene) Membrane for Pressure-Driven Electrokinetic Power Generation. Nano Energy 2020, 75, 104954.
    (20) Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L., Water-Evaporation-Induced Electricity with Nanostructured Carbon Materials. Nat. Nanotechnol. 2017, 12, 317-321.
    (21) Yun, T. G.; Bae, J.; Rothschild, A.; Kim, I.-D., Transpiration Driven Electrokinetic Power Generator. ACS Nano 2019, 13, 12703-12709.
    (22) Martin, R. M., Piezoelectricity. Phys. Rev. B. 1972, 5, 1607.
    (23) Dubi, Y.; Di Ventra, M., Thermoelectric Effects in Nanoscale Junctions. Nano Lett. 2009, 9, 97-101.
    (24) Wang, S.; Lin, L.; Wang, Z. L., Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Lett. 2012, 12, 6339-6346.
    (25) Srivastava, R.; Abraham, M. G., Nonequilibrium Thermodynamics of Electroosmosis of Liquid Mixtures. Studies on Acetone—Methanol Mixtures. J. Colloid Interface Sci. 1976, 57, 58-65.
    (26) Yang, J.; Lu, F.; Kostiuk, L. W.; Kwok, D. Y., Electrokinetic Microchannel Battery by Means of Electrokinetic and Microfluidic Phenomena. J. Micromech. Microeng. 2003, 13, 963.
    (27) Ren, Y.; Stein, D., Slip-Enhanced Electrokinetic Energy Conversion in Nanofluidic Channels. Nanotechnology 2008, 19, 195707.
    (28) Chein, R.; Liao, C.; Chen, H., Electrokinetic Energy Conversion Efficiency Analysis Using Nanoscale Finite-Length Surface-Charged Capillaries. J. Power Sources 2009, 187, 461-470.
    (29) Dhiman, P.; Yavari, F.; Mi, X.; Gullapalli, H.; Shi, Y.; Ajayan, P. M.; Koratkar, N., Harvesting Energy from Water Flow over Graphene. Nano Lett. 2011, 11, 3123-3127.
    (30) Newaz, A.; Markov, D.; Prasai, D.; Bolotin, K., Graphene Transistor as a Probe for Streaming Potential. Nano Lett. 2012, 12, 2931-2935.
    (31) Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W., Generating Electricity by Moving a Droplet of Ionic Liquid Along Graphene. Nat. Nanotechnol. 2014, 9, 378-383.
    (32) Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W., Waving Potential in Graphene. Nat. Commun. 2014, 5, 3582.
    (33) Zhang, G.; Duan, Z.; Qi, X.; Xu, Y.; Li, L.; Ma, W.; Zhang, H.; Liu, C.; Yao, W., Harvesting Environment Energy from Water-Evaporation over Free-Standing Graphene Oxide Sponges. Carbon 2019, 148, 1-8.
    (34) Li, C.; Tian, Z.; Liang, L.; Yin, S.; Shen, P. K., Electricity Generation from Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane. ACS Appl. Mater. Interfaces. 2019, 11, 4922-4929.
    (35) Shao, B.; Wu, Y.; Song, Z.; Yang, H.; Chen, X.; Zou, Y.; Zang, J.; Yang, F.; Song, T.; Wang, Y., Freestanding Silicon Nanowires Mesh for Efficient Electricity Generation from Evaporation-Induced Water Capillary Flow. Nano Energy 2022, 94, 106917.
    (36) Liu, X.; Gao, H.; Ward, J. E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D. R.; Yao, J., Power Generation from Ambient Humidity Using Protein Nanowires. Nature 2020, 578, 550-554.
    (37) Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L., Direct Power Generation from a Graphene Oxide Film under Moisture. Adv. Mater. 2015, 27, 4351-4357.
    (38) Xu, T.; Ding, X.; Shao, C.; Song, L.; Lin, T.; Gao, X.; Xue, J.; Zhang, Z.; Qu, L., Electric Power Generation through the Direct Interaction of Pristine Graphene‐Oxide with Water Molecules. Small 2018, 14, 1704473.
    (39) Lyu, Q.; Peng, B.; Xie, Z.; Du, S.; Zhang, L.; Zhu, J., Moist-Induced Electricity Generation by Electrospun Cellulose Acetate Membranes with Optimized Porous Structures. ACS Appl. Mater. Interfaces. 2020, 12, 57373-57381.
    (40) Gong, F.; Li, H.; Zhou, Q.; Wang, M.; Wang, W.; Lv, Y.; Xiao, R.; Papavassiliou, D. V., Agricultural Waste-Derived Moisture-Absorber for All-Weather Atmospheric Water Collection and Electricity Generation. Nano Energy 2020, 74, 104922.
    (41) Zhao, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Zha, J.; Wu, Z.; Huang, Q.; Zhou, Z.; Li, H.; He, F., A Nb2ctx/Sodium Alginate-Based Composite Film with Neuron-Like Network for Self-Powered Humidity Sensing. Chem. Eng. J. 2022, 438, 135588.
    (42) Ding, T.; Liu, K.; Li, J.; Xue, G.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J., All‐Printed Porous Carbon Film for Electricity Generation from Evaporation‐Driven Water Flow. Adv. Funct. Mater. 2017, 27, 1700551.
    (43) Liu, K.; Ding, T.; Li, J.; Chen, Q.; Xue, G.; Yang, P.; Xu, M.; Wang, Z. L.; Zhou, J., Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Adv. Energy Mater. 2018, 8, 1702481.
    (44) Jin, H.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Park, J.; Kim, Y. S., Identification of Water-Infiltration-Induced Electrical Energy Generation by Ionovoltaic Effect in Porous Cuo Nanowire Films. Energy Environ. Sci. 2020, 13, 3432-3438.
    (45) Ma, Q.; He, Q.; Yin, P.; Cheng, H.; Cui, X.; Yun, Q.; Zhang, H., Rational Design of Mof‐Based Hybrid Nanomaterials for Directly Harvesting Electric Energy from Water Evaporation. Adv. Mater. 2020, 32, 2003720.
    (46) Jin, H.; Park, J.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Yin, Z.; Kim, Y. S., Verification of Carrier Concentration‐Dependent Behavior in Water‐Infiltration‐Induced Electricity Generation by Ionovoltaic Effect. Small 2021, 17, 2103448.
    (47) Wu, M.; Peng, M.; Liang, Z.; Liu, Y.; Zhao, B.; Li, D.; Wang, Y.; Zhang, J.; Sun, Y.; Jiang, L., Printed Honeycomb-Structured Reduced Graphene Oxide Film for Efficient and Continuous Evaporation-Driven Electricity Generation from Salt Solution. ACS Appl. Mater. Interfaces 2021, 13, 26989-26997.
    (48) Sun, Z.; Feng, L.; Xiong, C.; He, X.; Wang, L.; Qin, X.; Yu, J., Electrospun Nanofiber Fabric: An Efficient, Breathable and Wearable Moist-Electric Generator. J. Mater. Chem. 2021, 9, 7085-7093.
    (49) Zhao, X.; Xiong, Z.; Qiao, Z.; Bo, X.; Pang, D.; Sun, J.; Bian, J., Robust and Flexible Wearable Generator Driven by Water Evaporation for Sustainable and Portable Self-Power Supply. Chem. Eng. J. 2022, 434, 134671.
    (50) Zhang, R.-Y.; Gao, M.; Liu, W.-R.; Chiang, W.-H.; Yeh, L.-H., A Graphene/Carbon Black Nanofluidic Membrane with Fast Ion Transport for Enhanced Electrokinetic Energy Generation. Carbon 2023, 204, 1-6.
    (51) Mai, V.-P.; Huang, W.-H.; Chang, Y.-L.; Yang, R.-J., Composite Go@ Silk Membrane for Capillary-Driven Energy Conversion. J. Membr. Sci. 2023, 121403.
    (52) Ma, J.; Guo, Z.; Han, X.; Guo, K.; Li, H.; Fang, P.; Wang, X.; Xin, J., Reduced Graphene Oxide/Feooh-Based Asymmetric Evaporator for the Simultaneous Generation of Clean Water and Electrical Power. Carbon 2023, 201, 318-327.
    (53) Zhang, X.; Wang, Y.; Zhang, X.; Lou, C.-W.; Lin, J.-H.; Li, T.-T., Preparation and Study of Bark-Like Mxene Based High Output Power Hydroelectric Generator. Chem. Eng. J. 2023, 465, 142582.
    (54) Bae, J.; Kim, M. S.; Oh, T.; Suh, B. L.; Yun, T. G.; Lee, S.; Hur, K.; Gogotsi, Y.; Koo, C. M.; Kim, I.-D., Towards Watt-Scale Hydroelectric Energy Harvesting by Ti 3 C 2 T X-Based Transpiration-Driven Electrokinetic Power Generators. Energy Environ. Sci. 2022, 15, 123-135.
    (55) Zhang, J.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M.; Yang, W.; Liu, J., Scalable Manufacturing of Free‐Standing, Strong Ti3c2tx Mxene Films with Outstanding Conductivity. Adv. Mater. 2020, 32, 2001093.
    (56) Cai, Y. Y.; Wang, J. J.; Cai, Z. H.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L., Enhanced Performance of Sulfonated Poly (Ether Ether Ketone) Hybrid Membranes by Introducing Sulfated Mof-808/Graphene Oxide Composites. ACS Appl. Energy Mater. 2021, 4, 9664-9672.
    (57) Furukawa, H.; Gandara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369-4381.
    (58) Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380-2388.
    (59) Kohonen, M. M.; Karaman, M. E.; Pashley, R. M., Debye Length in Multivalent Electrolyte Solutions. Langmuir 2000, 16, 5749-5753.
    (60) Butt, H.-J., Measuring Electrostatic, Van Der Waals, and Hydration Forces in Electrolyte Solutions with an Atomic Force Microscope. Biophys. J. 1991, 60, 1438-1444.
    (61) Levine, S.; Neale, G. H., The Prediction of Electrokinetic Phenomena within Multiparticle Systems. I. Electrophoresis and Electroosmosis. J. Colloid Interface Sci. 1974, 47, 520-529.
    (62) Levine, S.; Neale, G.; Epstein, N., The Prediction of Electrokinetic Phenomena within Multiparticle Systems: Ii. Sedimentation Potential. J. Colloid Interface Sci. 1976, 57, 424-437.
    (63) Bazant, M. Z.; Squires, T. M., Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications. Phys. Rev. Lett. 2004, 92, 066101.
    (64) Delgado, Á. V.; González-Caballero, F.; Hunter, R.; Koopal, L.; Lyklema, J., Measurement and Interpretation of Electrokinetic Phenomena. J. Colloid Interface Sci. 2007, 309, 194-224.
    (65) Bernabé, Y., Streaming Potential in Heterogeneous Networks. J. Geophys. Res. Solid Earth 1998, 103, 20827-20841.
    (66) Jiang, J.; Gándara, F.; Zhang, Y.-B.; Na, K.; Yaghi, O. M.; Klemperer, W. G., Superacidity in Sulfated Metal–Organic Framework-808. J. Am. Chem. Soc. 2014, 136, 12844-12847.
    (67) Logan, M. W.; Langevin, S.; Xia, Z., Reversible Atmospheric Water Harvesting Using Metal-Organic Frameworks. Sci. Rep. 2020, 10, 1492.

    無法下載圖示 全文公開日期 2028/08/15 (校內網路)
    全文公開日期 2028/08/15 (校外網路)
    全文公開日期 2028/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE