簡易檢索 / 詳目顯示

研究生: 林裕茂
Yu-mao Lin
論文名稱: 磁浮系統適應控制之理論與實作
Adaptive Control of Magnetic Levitation Systems: Theory and Experiments
指導教授: 黃安橋
An-Chyau Huang
口試委員: 林紀穎
Chi-Ying Lin
蔡宜昌
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: 磁浮系統適應控制理論與實作
外文關鍵詞: Adaptive Control, Magnetic Levitation Systems, Theory and Experiments
相關次數: 點閱:183下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對一磁浮系統,提出適應控制器,以處理其內部未知參數變動與外部時變干擾。由於傳統直立式磁浮架構不易對磁浮動子引入干擾效應,本文特以水平方式建構系統,並實現出時變干擾效應。由於此系統組態未見於文獻,因此本文詳細推導其運動方程式。因為該系統具有非對稱動態行為,使得控制器設計極具挑戰性。另外,系統內的非匹配未知項的存在,更大幅限制了控制器設計的有效性。本文以適應多面控制法,配合函數近似技術,來設計適應控制器。藉由嚴格的數學證明,可確保系統之穩定度。本文以實際的磁浮系統進行實驗,並與PID控制器比較性能,以彰顯控制器之優越性。


    In this thesis, an adaptive controller is designed to a magnetic levitation system to cope with internal time-varying uncertainties and external disturbances. Since the traditional magnetic levitation design is not easy to give external disturbances to the payload, a horizontal design is realized in this study. To facilitate the analysis and controller design, the equation of motion is derived in detail. Due to the asymmetric nature of the magnetic loop, there is a big challenge in the controller design process. In addition, since some of the uncertainties enter the system in a mismatched manner, few control paradigms are feasible here. A multiple-surface sliding control law is proposed with the help of the function approximation technique to stabilize the closed loop system under various uncertainties and disturbances. A rigorous mathematical proof is given to verify the feasibility of the design. Experimental studies are conducted with the comparisons with the conventional PID design to clarify the performance of the proposed controller.

    目錄 中文摘要Ⅰ 英文摘要Ⅱ 誌謝Ⅲ 目錄Ⅳ 圖表索引Ⅵ 第一章緒論1 第二章磁浮系統數學模型建立4 2.1磁浮系統架構4 2.1.1電磁力之方向4 2.1.2空氣磁阻之問題5 2.1.3水平作動之設計6 2.2電磁力之推導7 2.3磁浮動態方程式之推導10 第三章控制器設計13 3.1適應多重滑動面控制器設計13 3.2設計強健項適應律及穩定度分析16 3.3暫態分析20 第四章實驗21 4.1實驗設備與架構21 4.2實驗規劃24 4.2.1軌跡規劃24 4.2.2實驗範例安排24 4.3同向Regulation實驗28 4.3.1無干擾範例28 4.3.2小干擾範例31 4.3.3大干擾範例35 4.3.4小結38 4.4異向Regulation實驗39 4.4.1無干擾範例39 4.4.2小干擾範例42 4.4.3大干擾範例46 4.4.4小結49 4.5Tracking實驗50 4.5.1無干擾範例50 4.5.2小干擾範例54 4.5.3大干擾範例57 4.5.4小結61 第五章結論62 參考文獻63 作者簡介66

    [1]P. Poramate, R. Vanchai, “Nonlinear Backstepping Control Design Applied to Magentic Ball Control,” Proceedings of 2000 IEEE Trends in Electronics Conference, Vol. 3, pp. 304-307, 2000.
    [2]M. Aliasghary, A. Jalilvand, M. Teshnehlab, M. A. Shoorehdeli, “Sliding Mode Control of Magnetic Levitation System Using Radial Basis Function Neural Networks,” IEEE Conference on Robotics, Automation and Mechatronics, pp. 467-470, 2000.
    [3]C.Y. Kim and K.H. Kim, “Gain Scheduled Control of Magnetic Suspension System.” American Control Conference, Vol. 3, pp. 3127-3131, 1994.
    [4]T. E. Lee, J. P. Su, K. W. Yu, “Nonlinear Robust Control of a Magnetic Levitation System,” First International Conference on Innovative Computing, Information and Control, Vol. 1, pp. 517, 2006.
    [5]Z. J. Yang, K. Miyazaki, S. Kanae and K. Wada, “Robust Position Control of a Magnetic Levitation System via Dynamic Surface Control Technique,” IEEE Transactions on Industrial Electronics, Vol. 51, pp. 26-34, 2004.
    [6]S. Joo and J. H. Seo, “Design and Analysis of the Nonlinear Feedback Linearizing Control for an Electromagnetic Suspension System,” IEEE Transactions on Control Systems Technology, Vol. 5, pp. 135-144, 1997.
    [7]I. Mizumoto, S. Ohishi, Z. Iwai, “Adaptive Output Feedback Control Design for Exponentially Passive Systems with a PFC and Its Application to a Magnetic Levitation System,” Second International Conference on Innovative Computing Information and Control, pp. 432-435, 2007.
    [8]A. C. Huang and Y. C. Chen, “Adaptive Sliding Control for Single-Link Flexible-Joint Robot with Mismatched Uncertainties,” IEEE Transactions on Control Systems Technology, Vol. 12, pp. 770-775, 2004.
    [9]D. Zhang , N. Wang, Y. Li, W. Chang, “Parameter Self-Adaptive PID Algorithm for Magnetic Levitation Power Supply on Maglev Train,” IEEE Vehicle Power and Propulsion Conference, pp. 1-3, 2008.
    [10]M. Won and J. K. Hedrick, “Multiple-Surface Sliding Control of a Class of Uncertain Nonlinear Systems,” International Journal of Control, Vol. 64, pp. 693-706, 1996.
    [11]朱堃承,劉浩灃,楊今添, “電機工程概論,” 美商麥格羅•希爾國際股份有限公司, pp. 768-821, 2009.
    [12]洪紹剛, ”智慧型磁浮模組織設計與特別研究,” 國立臺灣大學機械工程系研究所, 碩士學位論文, 2000.
    [13]高岱千, ”磁浮系統之適應控制,” 國立台灣科技大學機械工程系研究所, 碩士學位論文, 2005.
    [14]D. L. Trumper, S. M. Olson and P. K. Subrahmanyan, “Linearizing Control of Magnetic Suspension Systems,” IEEE Transactions on Control Systems Technology, Vol. 5, pp. 427-438, 1997.
    [15]P. K. Sinha, A. N. Pechev, “Model Reference Adaptive Control of a Maglev System with Stable Maximum Descent Criterion,” Automatica Technical Communique, Vol. 35, pp. 1457-1465, 1999.
    [16]H. K. Liu, X. Zhang, W. S. Chang, “PID Control to Maglev Train System” International Conference on Industrial and Information Systems, pp. 341-343, 2009.
    [17]P. K. Sinha and A. N. Pechev, “Nonlinear H Controllers for Electromagnetic Suspension Systems,” IEEE Transactions on Automatic Control, Vol. 49, pp. 563-568, 2004.
    [18]黃安橋, “FAT-Based Adaptive Multiple-Surface Control of SISO non-autonomous Systems with Mismatched Uncertainties,” 講義, 2005.

    QR CODE