簡易檢索 / 詳目顯示

研究生: 鄭丁元
Ding-Yuan Cheng
論文名稱: 用於4G通訊網路暨後繼通訊網路之低複雜度Wi-Fi卸載機制設計
Design of a Low-Complexity Wi-Fi Offloading Mechanism in 4G and Beyond Communication Networks
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 范欽雄
Chin-Shyurng Fahn
林嘉慶
Jia-Chin Lin
蔡志宏
Zse-hong Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 41
中文關鍵詞: Wi-Fi卸載低複雜度第四代行動通訊第五代行動通訊多使用者裝置環境
外文關鍵詞: Wi-Fi Offloading, Low Complexity, 4G Mobile Communication, 5G Mobile Communication, Multi-UE Scenario
相關次數: 點閱:295下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在行動數據量爆炸性增長的現在,為了緩解第四代行動通訊技術甚至是其後繼網路的網路壅塞情況,Wi-Fi卸載是不可或缺的技術。然而,以往Wi-Fi卸載的研究往往忽略了使用者裝置計算資源以及記憶體有限之特徵,導致演算法之時間複雜度以及空間複雜度過高而難以在即時環境下應用於使用者裝置。為了解決上述問題,本論文提出在保證使用者服務品質(QoS)以及最小化使用者裝置通訊成本之低複雜度機制。透過模擬,我們驗證了此方法不僅在通訊成本、能源消耗以及檔案傳輸完成率方面媲美文獻上相關演算法,更有著極低的複雜度之優勢。


    With the explosive growth of mobile data, Wi-Fi offloading is an indispensable technology to alleviate the network congestion of 4G and even its successor, i.e., the beyond 4G (B4G) network. However, the research of Wi-Fi offloading in the past often neglected the characteristics of limited computing resources and memory of the user equipment (UE), resulting in a high-time-complexity and high-space-complexity algorithm to be applied to UEs in the real-time environment. In order to properly address aforementioned issues, a low-complexity mechanism is proposed in this paper to guarantee the quality of service (QoS) and minimize the communication cost for a UE. Through simulations, we successfully demonstrate that our proposed mechanism is not only comparable to the closely related algorithms in the literature in terms of communication cost, energy consumption, and file transfer completion ratio but also incurs extremely low complexity.

    目錄 論文指導教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 考試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 進階長期演進技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 LTE-U/LAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 LWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 第五代行動通訊系統. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 無線區域網路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Wi-Fi 卸載. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 論文其他章節之安排. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第二章、相關文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 DAWN 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 網路環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 使用者裝置成本模型. . . . . . . . . . . . . . . . . . . . . . . 11 v 2.2 Monotone DAWN 演算法. . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Energy Concerned DAWN 演算法. . . . . . . . . . . . . . . . . . . . . 18 2.4 壅塞感知之網路選擇及數據卸載演算法(NSG) . . . . . . . . . . . . . 19 第三章、低複雜度之Wi-Fi 卸載機制. . . . . . . . . . . . . . . . . . . . . . . 21 3.1 問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 設計概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 單一使用者裝置情境. . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 多個使用者裝置情境. . . . . . . . . . . . . . . . . . . . . . . 24 3.3 演算法之複雜度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 空間複雜度. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 時間複雜度. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 第四章、數值結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1 單一使用者裝置情境之模擬環境參數設定. . . . . . . . . . . . . . . 28 4.2 單一使用者裝置情境之數值結果分析與比較. . . . . . . . . . . . . . 29 4.2.1 通訊成本(Cost) . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 能源消耗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.3 檔案傳輸完成率. . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.4 演算法執行時間. . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 多個使用者裝置模擬環境參數設定. . . . . . . . . . . . . . . . . . . 34 4.4 多個使用者裝置情境之數值結果分析與比較. . . . . . . . . . . . . . 35 4.4.1 檔案傳輸完成率. . . . . . . . . . . . . . . . . . . . . . . . . . 35 vi 4.4.2 每GB 之通訊成本. . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4.3 演算法執行時間. . . . . . . . . . . . . . . . . . . . . . . . . . 37 第五章、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    [1] Deutsche Telekom AG, 5G architecture options?full set, June 2016.
    [2] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
    2017?2022, White Paper, Feb. 2019.
    [3] M. H. Cheung and J. Huang, “DAWN: Delay-aware Wi-Fi offloading and network
    selection,” IEEE Journal on Selected Areas in Communications, vol. 33, no.6,
    pp. 1214–1223, June 2015.
    [4] B. Murara, “IMT-2020 network high level requirements, how african countries can
    cope,” tech. rep., ITU-T, Apr. 2017.
    [5] G. Mayer, “5G infrastructure work in 3GPP,” tech. rep., 3rd Generation Partnership
    Project, Apr. 2017.
    [6] IMT-2020 Promotion Group, 5G Concept, White Paper, Feb. 2015.
    [7] 4G Americas, 4G Mobile Broadband Evolution: Release 10, Release 11 and Beyond
    HSPA+, SAE/LTE and LTE-Advanced, Oct. 2012.
    [8] 4G Americas, Understanding 3GPP Release 12: Standards for HSPA+ and LTE
    enhancements, Feb. 2015.
    [9] Nokia Corporation, LTE-Advanced Pro Pushing LTE capabilities towards 5G, White
    Paper, Dec. 2015.
    [10] ROHDE&SCHWARZ, 802.11ad - WLAN at 60 GHz : A Technology Introduction,
    White Paper, Nov. 2017.
    [11] S. Banerji, “Upcoming standards in wireless local area networks,” Wireless & Mobile
    Technologies, vol. 1, Sep. 2013.
    [12] Y. Ghasempour, “IEEE 802.11ay: Next-generation 60 GHz communication for 100
    Gb/s Wi-Fi,” IEEE Communications Magazine, vol. 55, no.12, pp. 1–7, Oct. 2017.
    39
    [13] P. F. Silva, V. Kaseva, and E. S. Lohan, “Wireless positioning in IoT: A look at
    current and future trends,” in Sensors, July 2018.
    [14] D. Suh, H. Ko, and S. Pack, “Efficiency analysis of WiFi offloading techniques,”
    IEEE Transactions on Vehicular Technology, vol. 65, no.5, pp. 3813–3817, May
    2016.
    [15] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading: How much can
    WiFi deliver?,” IEEE/ACM Transactions on Networking, vol. 21, no.2, pp. 536–550,
    April 2013.
    [16] Cisco Systems, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
    Update, 2017?2022, White Paper, Feb. 2019.
    [17] L. Gao, G. Iosifidis, J. Huang, L. Tassiulas, and D. Li, “Bargaining-based mobile
    data offloading,” IEEE Journal on Selected Areas in Communications, vol. 32, no.
    6, pp. 1114–1125, June 2014.
    [18] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “An iterative double auction for mobile
    data offloading,” in Proc. International Symposium and Workshops on Modeling
    and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 154–161,
    May 2013.
    [19] X. Zhuo, W. Gao, G. Cao, and Y. Dai, “Win-coupon: An incentive framework for 3G
    traffic offloading,” in Proc. IEEE International Conference on Network Protocols,
    pp. 206–215, Oct. 2011.
    [20] M. H. Cheung, R. Southwell, and J. Huang, “Congestion-aware network selection
    and data offloading,” in Proc. Conference on Information Sciences and Systems
    (CISS), pp. 1–6, March 2014.
    [21] The Theory of Dynamic Programming, vol. 60, Bull. Amer. Math. Soc, July 1954.
    [Online]. Available: https://projecteuclid.org/euclid.bams/1183519147.
    [22] M. H. Cheung and J. Huang, “DAWN: Delay-aware Wi-Fi offloading and network
    selection,” Feb. 2015. [Online]. Available: http://arxiv.org/abs/1502.07839.
    40
    [23] C. Zhang, B. Gu, Z. Liu, K. Yamori, and Y. Tanaka, “Cost- and energy-aware multiflow
    mobile data offloading using Markov decision process,” IEICE Transactions
    on Communications, Jan. 2018.
    [24] C. Tekin, M. Liu, R. Southwell, J. Huang, and S. H. A. Ahmad, “Atomic congestion
    games on graphs and their applications in networking,” IEEE/ACM Transactions on
    Networking, vol. 20, no.5, pp. 1541-1552, Oct. 2012.
    [25] B. Vöcking and R. Aachen, “Congestion games: Optimization in competition,” in
    Proc. Algorithms and Complexity in Durham Workshop, pp. 9–20, Kings College
    Publications, 2006.
    [26] F. Mehmeti and T. Spyropoulos, “Performance analysis of“on-the-spot”mobile data
    offloading,” in Proc. IEEE Global Communications Conference (GLOBECOM),
    pp. 1577–1583, Dec. 2013.

    QR CODE