簡易檢索 / 詳目顯示

研究生: 劉建成
Jian-Cheng Liu
論文名稱: 用於5G系統之低密度編解碼之實作
Implementation of Configurable LDPC Encoding and Decoding for 5G Communications
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 林銘波
Ming-Bo Lin
方文賢
Wen-Hsien Fang
賴坤財
Kuen-Tsair Lay
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 86
中文關鍵詞: 低密度奇偶檢查碼編解碼器可配置編解碼器第五代行動通訊矩陣排程
外文關鍵詞: LDPC Encoder and Decoder, Configurable Encoder and Decoder, 5G, Matrix scheduling
相關次數: 點閱:412下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了應用於5G 行動通訊系統中的可配置低密度奇偶檢查碼(LDPC)解碼器超大型積體電路(VLSI)設計與實作,在硬體架構上以降低面積為目標。在新架構上藉由設計改變檢查矩陣的位移量以減少循環移位器電路,並利用降低硬體平行度方法減少運算元的數量,達到以時間換取空間的效果。本論文也對因解碼方式採用TDMP方式產生的資料相依性造成硬體運算元空閒時間的問題提出檢查矩陣排程方法以及提供算式計算空閒時間的產生,此方法可以針對使用TDMP的不同電路架構進行排程。在檢查矩陣較大的情況下,此方法雖然不能找到所有可能性的最佳解,但能夠在有限的時間內找出較原本優秀的方法。經過實驗,在5G Base Graph 2 (BG2)中運用此排程方法,在不增加任何硬體資源的情況下,根據不同的架構能將吞吐量平均提升20%。
    本篇論文使用TSMC 90nm CMOS製程技術進行實作,晶片核心面積為9.62mm2 ,晶片總面積為13.34mm2 ,功耗為607.73mW。在工作頻率為200MHz,最大解碼數為8次下,最高吞吐量可達356Mbps,若使用提前決斷電路在訊雜比高情況下,最高吞吐量可以達到1.424Gbps。


    This thesis proposes the design and implementation of configurable low-density parity check decoder for 5G mobile communication sysyems. The purpose of design is reducing chip area. The novel decoder architecture reduces a cyclic shift circuit and number of processing units by designing the new parity check matrix and reducing the hardware parallelism. This thesis also proposes a method for the hardware implement issue introduced by TDMP due to data dependency characteristic. The method can be scheduled for the different hardware architecture which used TDMP algorithm. In the case of large parity check matrix, this method can not find the best solution of all possibilities, but it can find the better solution than original in limited time. In our experiment, average throughput can increase 20% by using the method without extra hardware resources in 5G Base Graph 2(BG2).
    The decoder is implemented using a TSMC 90nm CMOS technology. The core area is 9.62mm2 and the total chip area is 13.34mm2 and power consumption is 607.73mW and the maximum clock frequency is 200MHz and the maximum iteration number is 8. The throughput can reach 356Mbps at the maximum clock frequency and the maximum iteration number. The highest throughput can reach 1.424Gbps at high Signal-to-noise ratio with early termination circuit.

    圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 論文架構 2 第二章 低密度奇偶檢查碼 3 2.1 低密度奇偶檢查碼介紹 3 2.1.1 基本概念介紹 4 2.1.2 Tanner Graph 4 2.2 LDPC解碼方式介紹 6 2.2.1 Sum-of-Product Algorithm (SPA) 6 2.2.1.1 變數節點到檢查節點的機率資訊 6 2.2.1.2 檢查節點到變數節點的機率資訊 7 2.2.1.3 解碼流程 9 2.2.2 Minimum-Sum Algorithm (MSA) 9 2.2.2.1 MSA推導 9 2.2.2.2 解碼流程 11 2.2.2.3 Other Minimum-Sum Algorithm 12 2.2.2.3.1 Offset Minimum-Sum Algorithm (OMSA) 12 2.2.2.3.2 Normalized Minimum-Sum Algorithm (NMSA) 13 2.2.3 Message Passing way 14 第三章 5G New Radio LDPC Base Graph 16 3.1 Base Graph 16 3.1.1 Base Graph 的選擇 17 3.1.2 Set、Lifting size、Block size計算 18 3.1.3 Block size的選擇 19 3.1.4 Code rate的設定 20 3.2 Base graph 編碼方法 23 第四章 演算法的程式模擬與驗證 27 4.1 環境設定 27 4.2 程式解碼流程 31 4.2.1 Initial unit 32 4.2.2 Control unit 33 4.2.3 Decode unit 35 4.3 模擬效能 37 第五章 解碼器硬體架構 43 5.1 傳統硬體方塊圖 43 5.1.1 Permuter (shift module) 44 5.1.2 Check node unit 46 5.1.3 Variable node unit 48 5.1.4 Normalized Min-Sum unit 49 5.1.4.1 NMSU流程 51 5.1.4.2 NMSU stack control 52 5.2 新型解碼器架構 54 5.3 矩陣重新排程 59 5.4 FPGA模擬環境 63 5.5 FPGA解碼器效能模擬 64 第六章 晶片設計流程與參數選擇 66 6.1 晶片設計流程 66 6.2 記憶體的選擇 67 6.3 I/O Pad的選擇 69 6.4 硬體效能與文獻比較 72 第七章 結論與未來展望 74 參考文獻 75

    [1] R. G. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
    [2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes” Electronics Letters, vol.33 (6), pp. 457-458, 1997.
    [3] 3GPP TSG RAN WG1 Meeting 87, November 2016
    [4] N. Wiberg ; H.-A. Loeliger ; R. Kotter “Codes and iterative decoding on general graphs”
    [5] D.J. C. MacKay, “Gallager Codes that are Better Than Turbo Codes,” Proceedings of the 36th Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sep.1998.
    [6] R. Tanner, ”A recursive approach to low complexity codes” IEEE Transactions on Information Theory ( Volume: 27 , Issue: 5 , Sep 1981 )
    [7] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of Capacity Approaching Low-Density Parity-Check Codes, “IEEE Trans. Inf. Theory, vol.47, no.2, pp. 619-637, Feb. 2001.
    [8] M.P.C. Fossorier ; M. Mihaljevic ; H. Imai“Reduced complexity iterative decoding of low-density parity check codes based on belief propagation”, IEEE Transactions on Communications ( Volume: 47 , Issue: 5 , May 1999 ).
    [9] M.M. Mansour,” A Turbo-Decoding Message-Passing Algorithm for Sparse Parity-Check Matrix Codes”, IEEE Transactions on Signal Processing ( Volume: 54 , Issue: 11 , Nov. 2006 )
    [10] 3GPP,”NR,Multiplexing and channel coding”,TS 38.212, V15.5.0, (2019-03)
    [11] R1-1706971, 3GPP,”Performance evaluation of LDPC codes” ,Huawei, HiSilicon TSG RAN WG1,
    [12] R1-1706970, “LDPC design for eMBB data”, Huawei, HiSilicon, RAN1 #89
    [13] Cong Hui, Yonggang Wang and Xiaoming Lu “Implementation of a High Throughput LDPC Codec in FPGA for QKD System” 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology , Year : 2016,Pages:1494-1496.
    [14] Xinmiao Zhang; Alexander Bazarsky “Perfect Column-Layered Two-Bit Message-Passing LDPC Decoder and Architectures” 2018 IEEE International Symposium on Circuits and Systems (ISCAS) Year :2018,Pages: 1-5.
    [15] Alexandru Amaricai ; Oana Boncalo, “Cost Effective FPGA Implementation fot Hard Decision LDPC Decoders” 24th Telecommunications forum TELFOR 2016.
    [16] Thien T. Nguyen-Ly ; Tushar Gupta ; Manuel Pezzin ; Valention Savin ; David Declercq and Sorin Cotofana “Flexible, Cost-Efficient, HighThroughput Architecture for Layered LDPC Decoders with Fully-Parallel Processing Units” Euromicro Conference on Digital System Design 2016.
    [17] Dharmesh J. patel ; Pinalkumar Engineer “Design and implementation of quasi cyclic low density parity check (QC-LDPC) code on FPGA” International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2017.
    [18] Ming Zhao ; Xiaolin Zhang ; Ling Zhao ; Chen Lee,”Design of a High-Throughput QC-LDPC Decoder With TDMP Scheduling”, IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 62 , Issue: 1 , Jan. 2015 )
    [19] P. Urard ; E. Yeo ; L. Paumier ; P. Georgelin ; T. Michel ; V. Lebars ; E. Lantreibecq ; B. Gupta,” A 135Mb/s DVB-S2 compliant codec based on 64800b LDPC and BCH codes”, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005.”

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE