簡易檢索 / 詳目顯示

研究生: 林智民
Jyh - Min Lin
論文名稱: 以現場可程式化閘陣列實現多重計數器為基礎之時間至數位轉換電路
A Field Programmable Gate Array Time-to-Digital Converter Based on Multiple Counters
指導教授: 陳伯奇
Poki Chen
口試委員: 鄒應嶼
Ying-Yu Tzou
陳怡然
Yi-Jan Chen
許孟烈
Meng-Lieh Sheu
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: PVT變異抗性時間至數位轉換電路鎖相迴路現場可程式化閘陣列
外文關鍵詞: PVT, TDC, FPGA, PLL
相關次數: 點閱:332下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一個實現於現場可程式化閘陣列(Field Programmable Gate Array, FPGA)並能夠抵抗製程、電壓與溫度(process-voltage-temperature, PVT)變異的時間至數位轉換電路(Time-to-digital converter, TDC)。本論文之TDC不但可以抵抗PVT變異,並且可以達到高解析度與寬廣的量測時間範圍。經過FPGA內建的鎖相迴路提供八個不同的時脈相位,達到58.3ps不受PVT變異影像的解析度,另外並加入偏移校準技術更進一步降低PVT變異對偏移量的影響。經過短線量測之後量測出本論文之TDC的差分非線性誤差為-0.36~0.41 LSB;積分非線性誤差為-0.28~0.29 LSB。並完整測試涵蓋0C到60C的運作功能驗證本論文TDC對抗溫度變異之效果。


A process-voltage-temperature (PVT) insensitive time-to-digital converter (TDC) realized with Field Programmable Gate Array (FPGA) is presented. The proposed TDC is aimed to provide a PVT-insensitive solution with high resolution and wide measurement range. With the aid of the phase locked loop (PLL) in the FPGA which provides 8 different clock phases, a resolution of about 58.3 ps can be achieved against PVT variations. The proposed TDC successfully eliminates the offset with a simple offset cancellation technique. The short-term measurement result for the differential nonlinearity (DNL) of this TDC is -0.36 ~ 0.41 LSB and the integral nonlinearity (INL) is -0.28 ~ 0.23 LSB. This TDC was tested to be fully functional over 0C to 60C ambient temperature range with extremely low resolution variations.

第一章 序論……………………………………………………………………………1 1-1 研究動機……………………………………………………………………1 1-2 論文編排方式……………………………………………………………..…2 第二章 時間至數位轉換電路………….………………………………………………3 2-1 時間至數位轉換電路簡介……………………………………….……………3 2-2 時間至數位轉換電路之架構介紹與說明……………………………………6 2-2.1 計數器法之時間至數位轉換電路………………………………………6 2-2.2 抽頭式延遲線之時間至數位轉換電路……………………..…………10 2-2.3 延遲矩陣式時間至數位轉換電路……………………………….……12 2-2.4 鏈結構延遲線之時間至數位轉換電路…………………………….…15 2-2.5 以鎖相迴路為基礎之時間至數位轉換電路…………………………..18 2-2.6 結論………………………………………………………….…………20 第三章 FPGA架構簡介………………………………………………………………21 3-2 FPGA晶片與本論文所使用的FPGA開發板簡介……………….......………21 3-2 內嵌於FPGA晶片內的鎖相迴路簡介………………………………….……23 3-3 FPGA時脈網路(Clock Network)簡介………………………………….…25 3-3.1 時脈偏移(Clock Skew)問題與時脈樹………..………………………25 3-3.2 Altera Stratix IV系列的時脈網路(Clock Network)………….………27 第四章 多重計數器之時間至數位轉換電路………………………………………29 4-1 電路架構……………….…………………………………………..…………29 4-2 時間至脈衝產生器……………………….……………………………………30 4-1 計數器………………………………………………..………………………32 4-3.1 漣波計數器(Ripple Counter)…………………………………………32 4-3.2 同步計數器(Synchronous Counter)…………………………………..35 4-3.3 強森計數器(Johnson Counter)………………………………………..39 4-3.4 結論…………………………………………………………..…………41 4-4 自我偏移消除電路(Self Offset Cancelation Circuit)…………………………42 4-5 利用FPGA 內建的時脈網路來改善路徑延遲造成的問題……………….48 4-6 利用Quartus II的Logic Lock Region功能來縮短非同步電路的路徑延遲 問題………………………………………………………………………54 第五章 實驗量測結果與未來展望……………………………………………………57 5-1 量測儀器簡介…………….……………………………………………………57 5-2 量測環境的建立………....……………………………………………………61 5-3 量測結果…………..…………………………………………………………62 5-3.1 短線測量(Short-Term Measurement)…………………………………62 5-3.2 長線測量(Long-Term Measurement)…………………………………64 5-3.3 均方根誤差(RMS Resolution)測量……..……………………………66 5-3.4 溫度變異測量(Temperature Variation)………………..……………67 5-4 實測規格與相關文獻比較….…….…………………………………………70 5-5 結論與未來展望…………………….…………………………………………72 參考文獻………………………………………………………………………………..…73

[1]A. H. Chan and G. W. Roberts, “A jitter characterization system using a component-invariant Vernier delay line,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 1, pp. 79–95, Jan. 2004.

[2] K. Ealgoo, L. Hansang, L. Taeyon, C. Dongbum, and P. Jaehong, “Time of flight (TOF) measurement of adjacent pulses,” in IEEE Nucl. Sci. Symp. Conf. Rec., vol. 2, pp. 609–612, 2001.

[3] K. Maatta and J. Kostamovaara, “A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications,” IEEE Trans. Instrum. Meas., vol. 47, no. 2, pp. 521–536, 1998.

[4] N. Paschalidis et al., “A time-of-flight system on a chip suitable for space instrumentation,” in IEEE Nucl. Sci. Symp. Conf. Rec., vol. 2, pp. 750–754, 2001.

[5] P. Palojarvi, K. Maatta, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas., vol. 46, no. 4, pp. 996–999, 1997.

[6] H. Brockhaus and A. Glasmachers, “Single particle detector system for high resolution time measurements,” IEEE Trans. Nucl. Sci., vol. 39, no. 4, pp. 707–711, 1992.

[7] R.W. Necoecha, “High performance monolithic verniers for VLSI automatic test equipment,” Proceedings International Test Conference, pp. 422-430, 1992.

[8] T. Otsuji, “A picoseconds-accurary,700-MHz range si-bipolar time interval counter LSI,” IEEE Journal of Solid-State Circuit, vol. 28, pp. 941-947, 1993.

[9] P. Napolitano, A. Moschitta, P. Carbone, “A survey on time interval measurement techniques and testing methods,” IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2010 - Proceedings , art. no. 5488103, pp. 181-186, 2010.

[10] R. Nutt, “Digital time intervalometer,” Rev. Sci. Instrum, vol. 39, no. 9, pp. 1342-1345, 1968.

[11]J.Kalisz, R. Szplet, J. Pasierbinski, A. Poniecki, “Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution,” IEEE Trans. Instrum. Meas., vol. 46, pp. 71-75, 1997.

[12] J. Kalisz, R. Szplet, R. Pelka, A. Poniecki, “Single-chip interpolating time counter with 200-ps resolution and 43-s range,” IEEE Trans. Instrum. Meas., vol. 46, pp. 851-856, 1997.

[13] M.S. Andaloussi, M. Boukadoum, E.M. Aboulhamid, “A novel time-to-digital converter with 150 ps time resolution and 2.5 ns pulse-pair resolution,” Microelectronics, The 14th International Conference on 2002 – ICM, pp. 123-126, 2002.

[14] A.M. Amiri, M. Boukadoum, A. Khouas, “A Multihit Time-to-Digital Converter Architecture on FPGA,” IEEE Trans. Instrum. Meas., vol. 58, pp. 530-540, 2009.

[15] J. Wu, Z. Shi, I.Y. Wang, “Firmware-only Implementation of Time-to-Digital Converter (TDC) in Field-Programmable Gate Array (FPGA),” IEEE Nuclear Science Symposium Conference Record, 1, art. no. N10-2, pp. 177-181, 2003.

[16] J. Song, Q. An, S. Liu, “A High-Resolution Time-to-Digital Converter Implemented in Field-Programmable-Gate-Arrays,” IEEE Trans. on Nuclear Science, Vol. 53, pp. 236-241, 2006.

[17]A. Aloisio, P. Branchini, R. Giordano, V. Izzo, S. Loffredo, “High-precision Time-to-Digital Converter in a FPGA device,” IEEE Nuclear Science Symposium Conference Record, art. no. 5401744, pp. 290-294, 2009.

[18] J. Wang, S. Liu, Q. Shen, H. Li, Q. An, “A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays,” IEEE Trans. on Nuclear Science, vol. 57, art. no. 5446507, pp. 446-450, 2010.

[19] J. Wu, Z. Shi, “The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay,” IEEE Nuclear Science Symposium Conference Record, art. no. 4775079, pp. 3440-3446, 2008.

[20] R. Pelka, J. Kalisz, R. Szplet, “Nonlinearity correction of the integrated time-to-digital converter with direct coding,” IEEE Trans. Instrum. Meas. vol. 46, pp. 449-453, 1997.

[21] Poki Chen, Hsiu Che Cheng, Widodo, A., Wei Xiang Tsai, “A PVT insensitive field programmable gate array time-to-digital converter,” IEEE Nordic-Mediterranean Workshop on Time-to-Digital Converters, pp.1-4, 2013

[22] 林灶生, 劉紹漢, “Verilog FPGA晶片設計,” 全華圖書股份有限公司, 2005.

[23] R. Szplet, K. Klepacki, “An FPGA-integrated time-to-digital converter based on two-stage pulse shrinking,” IEEE Trans. Instrum. Meas., vol. 59, art. no. 5280372, pp. 1663-1670, 2010.

[24] S.S. Junnarkar, P. O'Connor, P. Vaska, R. Fontaine, “FPGA-based self-calibrating time-to-digital converter for time-of-flight experiments,” IEEE Transactions on Nuclear Science, vol. 56, art. no. 5204613, pp. 2374-2379, 2009.

[25] P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng and C.-Y. Chu, “A Fully Digital Time Domain Smart Temperature Sensor Realized with 140 FPGA Logic Elements,” IEEE Transactions on Circuits and Systems I, Vol.54, pp. 2661-2668, 2007.

[26] Poki Chen, Po-Yu Chen, Juan-Shan Lai and Yi-Jin Chen, “FPGA Vernier Digital-to-Time Converter with 1.58ps Resolution and 59.3 Minutes Operation Range,” IEEE Transactions on Circuits and Systems I, Vol. 57, pp.1134-1142, 2010.

[27] R.-J. Yang, S.,-P. Chen, S.-I. Liu, “A 3.125-Gb/s clock and data recovery circuit for the 10-Gbase-LX4 ethernet,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1356-1360, 2004.

[28] C.-K.K. Yang, R. Farjad-Rad, M.A. Horowitz, “A 0.5-μm CMOS 4.0-Gbit/s serial link transceiver with data recovery using oversampling,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 713-721, 1998.

[29] B.G. Goldberg, “The evolution and maturity of Fractional-N PLL synthesis,” Microwave Journal, vol. 39, pp. 124-134, 1996.

[30]M. Brownlee, P.K. Hanumolu, K. Mayaram, U.-K. Moon, “A 0.5-GHz to 2.5-GHz PLL with fully differential supply regulated tuning,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2720-2727, 2006.

[31] “Stratix IV Device Handbook” available from the Altera Corporation, http://www.altera.com/literature/lit-index.html

[32] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, D. K. Boese, B. A. Kahng, “Zero skew clock routing with minimum wirelength,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 39, pp. 799-814, 1992.

[33] F. D. Wann, A. M. Franklin, “Asynchronous and Clocked Control Structures for VSLI Based Interconnection Networks,” IEEE Transactions on Computers, vol. C-32, pp. 284-293, 1983.

[34] M.-B. Lin, “Digital System Design and Practices: Using Verilog HDL and FPGAs,” Wiley, 2008.

[35] M. Morris Mano, “Digital Design Third Edition,” Prentice Hall, 2002.

[36] “Quartus II Handbook Version 13.1,” http://www.altera.com/literature/lit-index.html

[37] “Quartus II Help v13.1,” http://www.altera.com/literature/lit-index.html

[38] “Agilent Technologies 81133A and 81134A 3.35 GHz Pulse Pattern Generators Data Sheet Version 1.2,” available from Agilent Corporation,
http://www.home.agilent.com/.

[39] “Datasheet: Digital Phosphor Oscilloscopes and Digital Serial Analyzers,” available from Agilent Corporation,
www2.tek.com/cmswpt/madetails.lotr?ct=MA&cs=mur&ci=14588&lc=EN.

[40] A.M. Amiri, A. Khouas, M. Boukadoum, “Pseudorandom stimuli generation for testing time-to-digital converters on an FPGA,” IEEE Trans. Instrum. Meas. vol. 58, pp. 2209-2215, 2009.

[41]Marc-Andre Daigneault and Jean Pierre David,”A High-Resolution Time-to-Digita Converter on FPGA Using Dynamic Reconfiguration,” IEEE Transactions On Instrumentation And Measurement, vol.60,NO.6,June 2011.
[42]Yuan-Ho Chen, “A High Resolution FPGA-based Merged Delay Line TDC with Nonlinearity Calibration, ” IEEE International Symposium on Circuits and Systems, pp. 2432-2435,2013.

[43]Fishburn. M.W, Menninga. L.H, Favi. C, Charbon. E , “A 19.6 ps, FPGA-Based TDC With Multiple Channels for Open Source Applications,” IEEE Nuclear Science Symposium Conference Record, art. no. 13563679, pp. 2203-2208, 2013.

無法下載圖示 全文公開日期 2019/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE