簡易檢索 / 詳目顯示

研究生: 劉威辰
Wei-Chen Liu
論文名稱: 骨水泥擴張術使用不同強度骨水泥於治療脊椎椎體骨折之研究:使用多節脊椎有限元素模型
Biomechanical Study of Percutaneous Vertebral Augmentation Techniques with Different Strength of Bone Cements using Multi-level Spinal Finite Element Mode
指導教授: 趙振綱
Ching-kong Chao
徐慶琪
Ching-chi Hsu
口試委員: 釋高上
Kao-shang Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 椎體成形術氣球椎體成形術椎體壓迫性骨折有限元素分析
外文關鍵詞: Vertebroplasty, Ballon Kyphoplasty, Vertebral compression fracture, Finite element analysis
相關次數: 點閱:183下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腰椎的椎體壓迫性骨折會使脊椎造成椎體變形、不穩定以及疼痛的現象。骨水泥擴張椎體成形術在過去已經被應用於脊椎的椎體壓迫性骨折的治療,減少臨床併發症的風險。骨水泥具有不同的機械強度,在過去已經有發展以及廣泛應用在這個治療上。然而,不同骨水泥治療椎體壓迫性骨折之生物力學結果,在過去還沒有被評估討論。因此,本研究的目的是藉由多節的脊椎有限元素模型,分析出不同類型骨水泥擴張椎體成型術的生物力學特性。
    本研究將胸椎第十節至薦椎第一節的三維有限元素模型使用Solidworks建立,包括有椎體(硬質骨、鬆質骨)、後方元件、椎間盤(纖維環、髓核)。模型建立完成後,再匯入Solidworks simulation模式內,針對六種類型的多節脊椎有限元素模型進行分析,其中包括有無骨折模型、骨折裂縫模型、骨折術後強度較高的骨水泥治療模型、骨折術後強度度較低的骨水泥治療模型、骨癒合後強度較高的骨水泥治療模型、骨癒合後強度較低的骨水泥治療模型。評估骨水泥擴張椎體成型術的生物力學特性,是以關節活動度與總應變能分析出的結果呈現。
    在不同負載情況下,分析結果顯示在骨癒合後,該肢段的關節活動度(ROM)不會受骨水泥強度的影響。在骨折術後,使用強度高的骨水泥擴張椎體成型術能提供比強度低的骨水泥較高的固定穩定度。此外,強度低的骨水泥擴張椎體成型術在骨癒合後,其生物力學特性幾乎與無骨折模型相同。
    希望藉由本研究所得的結果,可幫助外科醫師了解不同類型的骨水泥擴張椎體成型術的生物力學性能,並提供一些選擇資訊給外科醫生。


    Vertebral compression fractures of lumbar spine can cause deformity, pain, and disability. Percutaneous vertebral augmentation techniques have been used for vertebral compression fracture treatment to reduce the risks of the clinical complications. Bone cements with varied mechanical strength have been developed and applied to this treatment. However, the effects of mechanical strength of bone cements on the treatment of vertebral compression fractures have not been evaluated and discussed. Therefore, the purpose of this study was to analyze the biomechanical characteristics of percutaneous vertebral augmentation techniques with different types of bone cements by using a multi-level spinal finite element model.
    Three-dimensional finite element models of T10-S1 multi-level spinal segments, which consisted of vertebral bodies (cortical bone, and cancellous bone), posterior elements, intervertebral discs (annulus fibrosus and nucleus pulposus), and ligaments, were developed and analyzed by using SolidWorks Simulation in this study. Six types of the multi-level spinal finite element models were evaluated including intact model, fractured model, fractured model with high-strength bone cement after operation, fractured model with low-strength bone cement after operation, fractured model with high-strength bone cement after healing, and fractured model with low-strength bone cement after healing. The range of motion and the total strain energy were calculated to evaluate the biomechanical characteristic of percutaneous vertebral augmentation techniques.
    Under different loading conditions, the results showed that the range of motion of the segments was not affected by the strength of bone cements but the bone healing condition. Percutaneous vertebral augmentation with high-strength bone cement after surgical operation could provide more fixation stability than that with low-strength bone cement. In addition, percutaneous vertebral augmentation with low-strength bone cement after fracture healing revealed similar biomechanical characteristics compared with the intact condition. In conclusion, the results of this study could help surgeons to understand the biomechanical performances of percutaneous vertebral augmentation with different types of bone cements and also provide the selection information to surgeons.

    中文摘要............I ABSTRACT............II 誌謝............III 目錄............IV 圖目錄............VII 表目錄............XI 第一章 緒論............1 1.1 研究背景、動機與目的............1 1.2 脊椎的解剖與構造............4 1.3 椎體骨質疏鬆症之疾病及治療方式............8 1.3.1 椎體骨質疏鬆症之疾病............8 1.3.2 治療方式............10 1.4 骨水泥材料之簡介............11 1.5 文獻回顧............12 1.5.1 臨床研究............12 1.5.2 生物力學實驗............12 1.5.3 有限元素分析............14 1.6 本文架構............16 第二章 材料與方法............17 2.1 研究方法簡介............17 2.2 有限元素法簡介............19 2.3 有限元素模型建立............21 2.3.1 脊椎無骨折模型建立............21 2.3.2 脊椎壓迫性骨折模型建立............22 2.3.3 骨水泥模型建立............24 2.3.4 整體模型建立............ 25 2.4 有限元素分析............27 2.4.1 材料設定............27 2.4.2 韌帶設定............29 2.4.3 邊界與負載條件設定............32 2.4.4 零組件脊椎模型界面之接觸條件設定............34 2.4.5 網格與元素設定............36 2.5 收斂性分析............38 2.6 靈敏度分析............39 2.7 關節活動度(ROM)............40 2.8 生物力學評估方式............44 第三章 結果............46 3.1 收斂性分析............46 3.2 靈敏度分析............49 3.3 無骨折模型之ROM測試............51 3.4 腰椎第一節骨折不同設定............52 3.5 ROM結果............55 3.5.1 無骨折與骨折模型之分析結果............55 3.5.2 骨折術後之分析結果............58 3.5.3 骨癒合後之分析結果............61 3.6 總應變能結果............64 3.6.1無骨折與骨折模型之分析結果............64 3.6.2骨折術後之分析結果............70 3.6.3骨癒合後之分析結果............76 3.7 各節脊椎與椎間盤總應變能綜合結果............82 第四章 討論............85 第五章 結論與未來展望............93 參考文獻............96 作者簡介............101

    [1]Dougherty, G., "Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis," Medical Engineering & Physics, vol. 18, pp. 557-568, 1996.
    [2]Werner, H. J., H. Martin, D. Behrend, K. P. Schmitz, and H. C.Schober, "The loss of stiffness as osteoporosis progresses, "Medical Engineering & Physics, vol. 18, pp. 601-606, 1996.
    [3]Thomas, P. A., "Racial and ethnic differences in osteoporosis," The Journal of The American Academy of Orthopaedic Surgeons, 15 Suppl 1, S26-30, 2007.
    [4]Riggs BL, Melton LJ 3rd. "The worldwide problem of osteoporosis : insights afforded by epidemiology," Bone, vol. 17, pp. 505S-11S, 1995.
    [5]Becker, S., A. Chavanne, R. Spitaler, K. Kropik, N. Aigner, M. Ogon, and H. Redl, "Assessment of different screw augmentation techniques and screw designs in osteoporotic spines," European Spine Journal, vol. 17, pp. 1462-1469, 2008.
    [6]Lin DM, Gailloud P, Murphy KJ. "Percutaneous vertebroplasty in benign and malignant disease," Neurosurgery Quarterly, vol. 11(4), pp. 290-301, 2001.
    [7]Susan J. Hall, "Basic biomechanics," Mc Graw Hill, fifth edition, 2006.
    [8]田沼久美子, 益田律子, 三枝英人,圖解人體大百科: 楓葉社, (2010).
    [9]游祥明, 宋晏仁, 古宏海, 傅毓秀, 林光華, 解剖學 二版:華杏出版股份有限公司, (2005).
    [10]Augustus A. White III, Manaohar M. Panjabi, "Clinical Biomechanics of the Spine," J.B. Lippincott, second edition, 1990.
    [11]Heini, P. F., "The current treatment--a survey of osteoporotic fracture treatment. Osteoporotic spine fractures: the spine surgeon's perspective," Osteoporos International, vol. 16, pp. 85-92, 2005.
    [12]長庚醫療財團法人, http://www.cgmh.org.tw/.
    [13]Benzel, E. C. "Biomechanical of spine stabilization." American Association of Neurological Surgeons, Illinois, pp. 1-17, 2001.
    [14]百度文庫-骨水泥, http://wenku.baidu.com/view/f6f5b3c30c22590102029df0.html.
    [15]Daphne J. Theodorou, Stavroula J. Theodorou, Timothy D. Duncan, Steven R. Garfin, Wade H. Wong, "Percutaneous balloon kyphoplasty for the correction of spinal deformity in painful vertebral body compression fractures," The Journal of Clinical Imaging, vol. 26, pp. 1-5, 2002.
    [16]Bruce M. Frankel, Timothy Monroe, Chiang Wang, "Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty," The Spine Journal, vol. 7, pp. 575-582, 2007.
    [17]U. Berlemann, S. J. Ferguson, L.-P. Nolte, P. F. Heini, "Adjancent vertebral failure after vertebroplasty," The Journal of Bone & Joint Surgery, vol. 84-B, pp. 748-752, 2002.
    [18]Andrew Perry, Andrew Mahar, Jennifer Massie, Noemi Arrieta, Steven Garfin, Choll Kim, "Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model," The Spine Journal, vol. 5, pp. 489-493, 2005.
    [19]A. Jay Khanna, Samuel Lee, Marta Villarraga, Jonathan Gimbel, Duane Steffey, Jeffrey Schwardt, "Biomechanical evaluation of kyphoplasty with calcium phosphate cement in a 2-functional spinal unit vertebral compression fracture model," The Spine Journal, vol. 8, pp. 770-777, 2008.
    [20]Jaw-Lin Wang, Chun-Kai Chiang, Ya-Wen Kuo, Wen-Kai Chou, Been-Der Yang, "Mechanism of fractures of adjacent and augmented vertebrae following simulated vertebroplasty," Journal of Biomechanics, vol. 45, pp. 1372-1378 , 2012.
    [21]G. Baroud, J. Nemes, P. Heini, T. Steffen, "Load shift of the intervertebral disc after a vertebroplasty : a finite-element study," Eur Spine J, vol. 12, pp. 421-426, 2003.
    [22]Licheng Zhang, Guojing Yang, Lijun Wu, Binfeng Yu, "The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies:A finite element evaluation," Clinical Biomechanics, vol. 25, pp. 166-172, 2010.
    [23]B.T. Dickey, M.A. Tyndyk, D.A. Doman, D. Boyd, "In silico evaluation of stress distribution after vertebral body augmentation with conventional acrylics, composites and glass polyalkenoate cements," Journal of the mechanical behavior of biomedical materials, vol. 5, pp. 283-290, 2012.
    [24]Craig E. Tschirhart, Sandra E. Roth, Cari M. Whyne, "Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: effects of cement distribution patterns and volume," Journal of Biomechanics, vol. 38, pp. 1582-1590, 2005.
    [25]Tohmeh A, Mathis J, Fenton D, Levine A, Belkoff S, "Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures," Spine, vol. 24, pp. 1772-1776, 1999.
    [26]Cohen M, Blair B, Garfin S, "Thoracolumbar compression fractures," In:Levine A, Eismont F, Garfin S, Zigler J, editors. Spine trauma. Philadelphia:WB Saunders, pp. 388-401, 1998.
    [27]龍震工作室, "Solidworks 2011基礎設計," 碩博文化股份有限公司, 2011.
    [28]實威國際, "SolidWorks Simulation原廠教育訓練手冊," 易習圖書股份有限公司, 2011.
    [29]康淵 陳信吉, "ANSYS 入門 (修訂四版)," 全華圖書股份有限公司, 2006.
    [30]徐慶琪, "骨螺絲之結構設計與生物力學分析," 國立台灣科技大學機械工程研究所博士論文, 2005.
    [31]陳政行, "椎體成形術中骨水泥容量及位置之生物力學評估," 私立中原大學醫學工程系碩士論文, 2003.
    [32]Dongmei Wang, Dufang Shi, Xilei Li, Jian Dong, Chunhui Wang, Shanguang Chen, "Biomechanical comparison of different pedicle screw fixations for thoracolumbar burst fractures using Finite Element Method," Applied Mechanics and Materials, vol. 117-119, pp. 699-702, 2012.
    [33]Yang-Hwei Tsuang, Yueh-Feng Chiang, Chih-Yi Hung, Hung-Wen Wei, Chang-Hung Huang, Cheng-Kung Cheng, "Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-A finite element study, " Medical Engineering & Physics, vol. 31, pp. 565-570, 2009.
    [34]Dong Suk Shin, Kunwoo Lee, Daniel Kim, "Biomechanical study of lumbar spine with dynamic stabilization device using finite element method," Computer-Aided Design, vol. 39, pp.559-567, 2007.
    [35]Shih-Hao Chen, Zheng-Cheng Zhong, Chen-Sheng Chen, Wen-Jer Chen, Chinghua Hung, "Biomechanical comparison between lumbar disc arthroplasty and fusion," Medical Engineering & Physics, vol. 31, pp. 244-253, 2009.
    [36]Chris Littlewood, Stephen May, "Measurement of range of movement in the lumbar spine-what methods are valid? A systematic review," Physiotherapy, vol. 93, pp. 201-211, 2007.
    [37]Chen CS, Cheng CK, Liu CL, Lo WH, "Stress analysis of the disc adjacent fusion in lumbar spine," Med Eng Phys, vol. 23, pp. 483-491, 2001.
    [38]Yamamoto I, Panjabi MM, Crisco T, Oxland T, "Three-dimension movement of the whole lumbar spine and lumbosacral joint," Spine, vol. 14, pp. 1256-1260, 1989.
    [39]Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ, "Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves," J Bone Joint Surg Am, vol. 76, pp. 413-424, 1994.
    [40]Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ, "Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine," Spine, vol. 26, pp. E557-561, 2001.

    QR CODE