簡易檢索 / 詳目顯示

研究生: 高煒凱
Wei-Kai Gao
論文名稱: 數位雕刻建模技術與有限元素分析於可降解骨錨釘之生物力學研究
Biomechanical Investigation of Biodegradable Bone Anchor Using Digital Sculpt Modeling and Finite Element Analysis
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
黃昌弘
Chang-Hung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 有限元素分析骨錨釘可降解植體數位雕刻建模技術
外文關鍵詞: Finite element analysis, Bone anchor, Biodegradable implant, Digital sculpting
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肩關節旋轉肌撕裂是常見的肩部疾病,透過骨錨釘及手術縫線能夠將斷裂的肌腱做修復,多孔結構骨錨釘可以促進骨長入效果。然而多孔結構的骨錨釘本身機械強度不如實體結構骨錨釘,因此在設計多孔結構的骨錨釘須了解用於治療旋轉肌撕裂的固定強度。而可降解材料的使用可以解決患者需要進行二次手術的需求,但是骨錨釘經過降解後其植體強度是否滿足人體需求是需要探討的。在過去的研究可以透過電腦分析技術的方式探討骨錨釘的固定強度,然而模型的建立並未考慮手術縫線的施加。可降解植體透過降解實驗了解機械性質的變化需要花費大量的時間,對於可降解植體的開發是一限制。因此本研究的目的為建立包含手術縫線的可降解鐵基骨錨釘拔出模型,以及利用數位雕刻建模技術建置鐵基骨錨釘降解模型,探討鐵基骨錨釘的固定強度及降解後的機械性質變化。
    本研究針對兩種結構設計鐵基骨錨釘進行研究,建立骨錨釘拔出模型,針對三種手術縫線牽引角度0度、45度及90度,進行拔出模擬探討鐵基骨錨釘在不同拔出角度下的固定強度。而鐵基骨錨釘降解後的幾何外型透過數位雕刻建模技術,分別建置了五種降解情況的實體幾何模型,並透過拉伸模擬計算鐵基骨錨釘的機械性質變化。
    電腦模擬結果顯示,鐵基骨錨釘的可撓性結構可以在45度角拔出及90度角拔出增加骨錨釘的固定強度。透過數位雕刻建模技術可以有效的建置鐵基骨錨釘降解模型,並且計算出的機械性質變化趨勢與機械測試資料相同。本研究建置的鐵基骨錨釘電腦模擬分析技術預期能夠給予骨錨釘的開發設計提供幫助。


    Rotator muscle tear is a common shoulder disease. Bone anchors and sutures can be used to repair the ruptured tendon. Porous structure bone anchor can promote bone ingrowth effect. However, the mechanical strength of bone anchors with porous structures is worse than that of solid-structure bone anchors. Therefore, in the design of bone anchors with porous structures, it is necessary to understand the fixation strength for the treatment of rotator tears. The use of biodegradable materials can address the need for secondary surgeries in patients. However, it is necessary to investigate whether the implant strength of bone anchors meets the requirements of the human body after degradation. Past studies have studied the fixation strength of bone anchors through finite element analysis. However, the numerical models did not consider sutures. Evaluating the mechanical properties of biodegradable implants through degradation experiments requires a significant amount of time, which poses limitations in the development of biodegradable implants. Therefore, the aim of this study was to establish an iron-based bone anchor pullout model and degradation model that incorporates finite element analysis and digital sculpting modeling techniques.
    A pullout model for the two designs of bone anchors was developed to simulate the fixation strength under three different angles of suture traction: 0 degrees, 45 degrees, and 90 degrees. Furthermore, the iron-based bone anchors after degradation were constructed using digital sculpting modeling techniques. Five different degradation periods of bone anchors were developed, and the mechanical property changes of the iron-based bone anchors were calculated through tensile simulations.
    The computer simulation results showed that the flexible structure of the iron-based bone anchor can increase the fixation strength during pullout at 45 degrees and 90 degrees angles. The use of digital sculpting modeling techniques effectively facilitates the construction of degradation models for iron-based bone anchors, and the calculated trends in mechanical property changes align with the mechanical testing data. The computer simulation analysis technique for iron-based bone anchors developed in this study was expected to provide assistance in the design and development of bone anchors.

    中文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 1 第一章 緒論 1.1 研究背景、動機與目的 1.2 肩關節結構介紹 1.3 肩關節旋轉肌撕裂原因及治療方式 1.3.1 治療方式 1.4 骨錨釘種類 1.5 文獻回顧 1.5.1 骨錨釘拔出模擬之文獻回顧 1.5.2 可降解植入物降解實驗之文獻回顧 1.5.3 可降解植入物電腦模擬之文獻回顧 1.6 本文架構 2 第二章 材料與方法 2.1 可撓性鐵基骨錨釘幾何模型建立 2.2 鐵基骨錨釘拔出模型建立 2.3 鐵基骨錨釘拔出之有限元素分析 2.3.1 網格設定 2.3.2 材料設定 2.3.3 邊界及負載條件 2.3.4 介面接觸設置 2.3.5 結果後處理 2.4 可撓性鐵基骨錨釘降解實驗資料 2.5 鐵基骨錨釘不同降解時期之幾何外型建置 2.6 鐵基骨錨釘拉伸之有限元素分析 2.6.1 網格設定 2.6.2 材料設定 2.6.3 邊界負載條件及接觸設置 2.6.4 結果後處理 3 第三章 結果 3.1 鐵基骨錨釘拔出結果 3.1.1 網格收斂性分析結果 3.1.2 拔出過程之骨骼模型應力分布 3.1.3 拔出負荷曲線結果 3.1.4 拔出勁度及最大拔出力結果 3.1.5 有限元素模型結果驗證 3.2 鐵基骨錨釘拉伸結果 3.2.1 網格收斂性分析結果 3.2.2 不同降解時期鐵基骨錨釘於拉伸後之形變分布結果 3.2.3 不同降解時期鐵基骨錨釘之拉伸曲線結果 3.2.4 不同降解時期鐵基骨錨釘之機械性質變化結果 3.2.5 有限元素模型結果驗證 4 第四章 討論 4.1 骨錨釘於於不同拔出角度討論 4.2 骨頭模型考慮非線性材料對於拔出結果的影響 4.3 骨錨釘的可撓性對於拔出負荷的影響 4.4 骨錨釘拔出模擬方式 4.5 數位雕刻建模技術用於降解模型建立的可行性 4.6 兩種結構設計骨錨釘機械性值變化差異 4.7 研究限制 5 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] Ahmad, Z., Al-Wattar, Z., Rushton, N., Akinfala, M., Dawson-Bowling, S., & Ang, S. (2021). Holding on by a thread: the continuing story of rotator cuff tears. British Journal of Hospital Medicine, 82(1), 1-10.
    [2] Gumina, S., Proietti, R., Caccavale, R., Paroli, M., Standoli, J. P., Cantore, M., & Candela, V. (2023). Peripheral microcirculation alteration as cause of posterosuperior rotator cuff tear: the possible indirect contribution of nailfold capillaroscopy. Journal of Shoulder and Elbow Surgery, 32(3), 604-609.
    [3] Smith, M. A., & Smith, W. T. (2010). Rotator cuff tears: an overview. Orthopaedic Nursing, 29(5), 319-322.
    [4] Südkamp, N. P. (2001). Rotator cuff rupture. Zentralblatt fur Chirurgie, 126(3), 177-183.
    [5] Josephbermanmd of the jointpreservation center,
    http://josephbermanmd.com/diagnosis-treatament-of-the-shoulder/rotator-cuff-tear/.
    [6] Boileau, P., Brassart, N., Watkinson, D. J., Carles, M., Hatzidakis, A. M., & Krishnan, S. G. (2005). Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal?. Journal of Bone and Joint Surgery-American, 87(6), 1229-1240.
    [7] Colvin, A. C., Egorova, N., Harrison, A. K., Moskowitz, A., & Flatow, E. L. (2012). National trends in rotator cuff repair. Journal of Bone and Joint Surgery-American, 94(3), 227.
    [8] Mihata, T., Lee, T. Q., Watanabe, C., Fukunishi, K., Ohue, M., Tsujimura, T., & Kinoshita, M. (2013). Clinical results of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. Journal of Arthroscopic & Related Surgery, 29(3), 459-470.
    [9] Robbe, R., & Paletta Jr, G. A. (2004). Knotless suture-based anchors. Operative Techniques in Sports Medicine, 12(4), 221-224.
    [10] Visscher, L. E., Jeffery, C., Gilmour, T., Anderson, L., & Couzens, G. (2019). The history of suture anchors in orthopaedic surgery. Clinical Biomechanics, 61, 70-78.
    [11] Nouri, A., Shirvan, A. R., Li, Y., & Wen, C. (2023). Biodegradable metallic suture anchors: A review. Smart Materials in Manufacturing, 1, 100005.
    [12] He, H. B., Hu, Y., Li, C., Li, C. G., Wang, M. C., Zhu, H. F., ... & Wang, T. (2020). Biomechanical comparison between single-row with triple-loaded suture anchor and suture-bridge double-row rotator cuff repair. BMC Musculoskeletal Disorders, 21(1), 1-8.
    [13] Kääb, M. J., Rahn, B. A., Weiler, A., Curtis, R., Perren, S. M., & Schneider, E. (2002). Osseous integration of poly-(L-co-D/L-lactide) 70/30 and titanium suture anchors: an experimental study in sheep cancellous bone. Injury-International Journal of the Care of the Injured, 33, 37-42.
    [14] Tai, C. C., Lo, H. L., Liaw, C. K., Huang, Y. M., Huang, Y. H., Yang, K. Y., ... & Chen, C. Y. (2021). Biocompatibility and Biological performance evaluation of additive-manufactured bioabsorbable iron-based porous suture anchor in a rabbit model. International Journal of Molecular Sciences, 22(14), 7368.
    [15] Han, H. S., Loffredo, S., Jun, I., Edwards, J., Kim, Y. C., Seok, H. K., ... & Glyn-Jones, S. (2019). Current status and outlook on the clinical translation of biodegradable metals. Materials Today, 23, 57-71.
    [16] Barber, F. A., Herbert, M. A., Coons, D. A., & Boothby, M. H. (2006). Sutures and suture anchors—update 2006. Journal of Arthroscopic & Related Surgery, 22(10), 1063-1069.
    [17] Barber, F. A., Herbert, M. A., & Richards, D. P. (2003). Sutures and suture anchors: update 2003. Journal of Arthroscopic & Related Surgery, 19(9), 985-990.
    [18] Deakin, M., Stubbs, D., Bruce, W., Goldberg, J., Gillies, R. M., & Walsh, W. R. (2005). Suture strength and angle of load application in a suture anchor eyelet. Journal of Arthroscopic & Related Surgery, 21(12), 1447-1451.
    [19] Sano, H., Takahashi, A., Chiba, D., Hatta, T., Yamamoto, N., & Itoi, E. (2013). Stress distribution inside bone after suture anchor insertion: simulation using a three-dimensional finite element method. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1777-1782.
    [20] Su, T. Y., Tang, H. Y., Jang, J. S. C., Chen, C. H., & Chen, H. H. (2021). Design and development of magnesium-based suture anchor for rotator cuff repair using finite element analysis and in vitro testing. Applied Sciences, 11(20), 9602.
    [21] Shuai, C., Li, Y., Deng, F., Yang, Y., Peng, S., Qi, F., & Shen, L. (2020). Mesoporous Carbon as Galvanic-Corrosion Activator Accelerates Fe Degradation. Applied Sciences, 10(7), 2487.
    [22] Sikora-Jasinska, M., Chevallier, P., Turgeon, S., Paternoster, C., Mostaed, E., Vedani, M., & Mantovani, D. (2018). Long-term in vitro degradation behaviour of Fe and Fe/Mg 2 Si composites for biodegradable implant applications. RSC Advances, 8(18), 9627-9639.
    [23] Micallef, J., Pandya, J., & Low, A. K. (2019). Management of rotator cuff tears in the elderly population. Maturitas, 123, 9-14.
    [24] OrthoInfo,
    https://orthoinfo.aaos.org/en/diseases--conditions/rotator-cuff-tears/.
    [25] Codman, E. A., & Akerson, I. B. (1931). The pathology associated with rupture of the supraspinatus tendon. Annals of Surgery, 93(1), 348.
    [26] Loew, M., Habermeyer, P., Wiedemann, E., Rickert, M., & Gohlke, F. (2000). Recommendations for diagnosis and expert assessment of traumatic rotator cuff lesions. Der Unfallchirurg, 103(5), 417-426.
    [27] Ma, R., Chow, R., Choi, L., & Diduch, D. (2011). Arthroscopic rotator cuff repair: suture anchor properties, modes of failure and technical considerations. Expert Review of Medical Devices, 8(3), 377-387.
    [28] Bartl, C., Kouloumentas, P., Holzapfel, K., Eichhorn, S., Wörtler, K., Imhoff, A., & Salzmann, G. M. (2012). Long-term outcome and structural integrity following open repair of massive rotator cuff tears. International Journal of Shoulder Surgery, 6(1), 1-8
    [29] Gohlke, F., Rolf, O., & Böhm, D. (2007). Open reconstruction of the rotator cuff. Orthopade, 36(9), 834-847.
    [30] Ong, B. C., Sekiya, J. K., & Rodosky, M. W. (2002). Open techniques for repair of largeand massive rotator cuff tears. Operative Techniques in Sports Medicine, 10(2), 69-74.
    [31] Arthrex Corkscrew FT Anchor,
    https://www.arthrex.com/shoulder/corkscrew-ft.
    [32] MedicalExpo,
    https://www.medicalexpo.com/prod/smith-nephew/product-70896-686331.html.
    [33] Smith+Nephew TWINFIX Suture Anchor,
    https://www.smith-nephew.com/en/health-care-professionals/products/sports-medicine/twinfix-ha-pk-w-needles-w-ultrabraid-suture-anchor-shoulder-ppl#reference-materials
    [34] Barber, F. A., Herbert, M. A., Beavis, R. C., & Oro, F. B. (2008). Suture anchor materials, eyelets, and designs: update 2008. Journal of Arthroscopic & Related Surgery, 24(8), 859-867.
    [35] Smith+Nephew HEALICOIL KNOTLESS Suture Anchor,
    https://www.smith-nephew.com/en-nz/health-care-professionals/products/sports-medicine/healicoil-knotless-suture-anchor#overview.
    [36] Ibán, M. A. R., Zarcos, I., Vega, R., Díaz, R. R., Cortés, M. R. E., Moreno, R. L., & Heredia, J. D. (2023). Cyst formation and bony ingrowth inside coil-type open-architecture anchors used for arthroscopic remplissage: a volumetric computed tomographic study of 50 anchors. Journal of Shoulder and Elbow Surgery, 32(2), 333-339.
    [37] Barber, F. A., & Herbert, M. A. (2013). Cyclic loading biomechanical analysis of the pullout strengths of rotator cuff and glenoid anchors: 2013 update. Journal of Arthroscopic & Related Surgery, 29(5), 832-844.
    [38] Yamauchi, S., Tsukada, H., Sasaki, E., Sasaki, S., Kimura, Y., Yamamoto, Y., ... & Ishibashi, Y. (2022). Biomechanical analysis of bioabsorbable suture anchors for rotator cuff repair using osteoporotic and normal bone models. Journal of Orthopaedic Science, 27(1), 115-121.
    [39] Sano, H., Tokunaga, M., Noguchi, M., Inawashiro, T., Irie, T., Abe, H., ... & Itoi, E. (2016). Comparison of fixation properties between coil-type and screw-type anchors for rotator cuff repair: A virtual pullout testing using 3-dimensional finite element method. Journal of Orthopaedic Science, 21(4), 452-457.
    [40] Chae, S. W., Kang, J. Y., Lee, J., Han, S. H., & Kim, S. Y. (2018). Effect of structural design on the pullout strength of suture anchors for rotator cuff repair. Journal of Orthopaedic Research, 36(12), 3318-3327.
    [41] Basri, H., Prakoso, A. T., Sulong, M. A., Md Saad, A. P., Ramlee, M. H., Agustin Wahjuningrum, D., ... & Syahrom, A. (2020). Mechanical degradation model of porous magnesium scaffolds under dynamic immersion. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(1), 175-185.
    [42] Shen, Z., Zhao, M., Bian, D., Shen, D., Zhou, X., Liu, J., ... & Zheng, Y. (2019). Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. Journal of Materials Science & Technology, 35(7), 1393-1402.
    [43] Gartzke, A. K., Julmi, S., Klose, C., Waselau, A. C., Meyer-Lindenberg, A., Maier, H. J., ... & Wriggers, P. (2020). A simulation model for the degradation of magnesium-based bone implants. Journal of the Mechanical Behavior of Biomedical Materials, 101, 103411.
    [44] Chandra, G., Pandey, A., & Tipan, N. (2022). Longitudinally centered embossed structure in the locking compression plate for biodegradable bone implant plate: a finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 25(6), 603-618.
    [45] Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and shear properties of commercially available polyurethane foams. Journal of Biomechanical Engineering, 125(5), 732-734.

    無法下載圖示
    全文公開日期 2033/08/08 (校外網路)
    全文公開日期 2033/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE