簡易檢索 / 詳目顯示

研究生: 戴佳盈
Jia-Ying Dai
論文名稱: Sn-9.0Zn、Sn-3.0Ag-0.5Cu與Ag基材回銲次數對界面反應及機械性質的研究
The Study of Interfacial Reactions and Mechanical Properties between Sn-9.0Zn、Sn-3.0Ag-0.5Cu and Ag Substrate with Reflowing Times
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 周賢鎧
Shyan-kay Jou
劉興軍
Xing-Jun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 無鉛銲料回銲次數界面反應
外文關鍵詞: lead free solder, reflowing times, interfaction reaction
相關次數: 點閱:335下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討Sn-9wt%Zn、Sn-3.0wt%Ag-0.5wt%Cu合金銲料以Ag為基材在經過不同的回銲次數後對界面反應與機械性質的影響,並以反應偶形式來觀察其界面反應後之介金屬相種類與形態,且根據介金屬相於不同的回銲次數及反應時間之厚度表現,探討其反應機制,並量測其銲點的機械強度來評估接點的可靠度。實驗結果顯示,Sn-9Zn/Ag系統在240℃下,生成AgZn3、Ag5Zn8及AgZn相,以冰水淬冷的反應偶介面處析出的AgZn3相較薄, 在空冷的介面處有棒狀Zn的析出,隨著反應時間及回銲次數的增加棒狀Zn會逐漸減少成細小針狀Zn;Sn-3.0Ag-0.5Cu/Ag系統在240℃下,生成Ag3Sn相,在空冷的反應偶中,Ag3Sn隨著回銲次數的增加有逐漸粗大化的趨勢。此二系統之介金屬相厚度與反應時間之平方根呈線性關係,反應機制皆為擴散控制所主導。


In this study, Sn-9wt%Zn、Sn-3.0wt%Ag-0.5wt%Cu solders and the Ag metal were prepared to form the reaction couples. During different reflowing times, we investigated interfacial reaction and mechanical properties of the reaction couples.
The results showed that the AgZn3、Ag5Zn8及AgZn phases were form at the Sn-9Zn/Ag interface. The AgZn3 phase quenched in ice water was thinner than quenched in air. The amounts of rod-shaped Zn precipitates in Sn-9Zn/Ag quenched in air are more than Sn-9Zn/Ag quenched in ice water. And The thickness of IMC between Sn-9Zn/Ag and reaction couples increase with reflowing times. In SAC/Ag system, we found the Ag3Sn phase was form at the Sn-9Zn/Ag interface and the Ag3Sn between SAC/Ag interface became coarsening with reflowing times. Also, the thickness was proportional to the square root of reaction time. The interfacial reaction mechanism was diffusion controlled.
In the ball shear test, the fracture surface showed brittle and AgZn3 phase appear with the increasing of reflowing times for the Sn-9.0Zn/Ag couple. For the SAC/Ag couple, the fracture surface showed ductile and slightly brittle failure and Ag3Sn phase appear with the increasing of reflowing times.

摘要..........................................................................................................Ⅰ Abstract.....................................................................................................Ⅱ 誌謝..........................................................................................................Ⅲ 目錄..........................................................................................................Ⅴ 圖目錄......................................................................................................Ⅷ 表目錄....................................................................................................XII 第一章、前言……………………………………………………………1 第二章、文獻回顧………………………………………………………3 2-1 電子構裝…………………………………………..………….3 2-1.1電子構裝簡介……………………………………..............3 2-1.2覆晶接合技術……………………………………………..4 2-2 無鉛銲料……………………………………………….….….8 2-2.1錫-鋅(Sn-Zn)…………………………………………...….9 2-2.2錫-銀-銅 (Sn-Ag-Cu)……………………………...…….11 2-3 界面反應與擴散理論………………………………….....…13 2-3.1界面反應理論…………………………………………...13 2-3.2擴散理論…………………………………..……….……16 2-4 界面反應相關文獻…………………………….………..….19 2-4.1 Sn/Ag界面反應……………………………………...…19 2-4.2 Sn-Ag-Cu/Ag界面反應……………………………..…19 2-4.3 Sn-Zn/Ag界面反應……………………………...….…...20 2-4.4 其他介面反應…………………………………..………20 2-5 機械性質測試……………………….…………………...….21 2-5.1 剪應力相關文獻………………………………………..22 第三章、實驗方法………………………………………………….…..23 3-1 基材製備…………………………………………..…..…….23 3-2 銲料製備…………………………………………..………...23 3-3 反應偶製備……………………………………..…………...23 3-4 金相處理………………………………………………….....24 3-5 界面觀察與分析…………………………………..………...26 3-6 機械性質………………………………………………....….26 3-6.1 錫球製備…………………………..…………………....27 3-6.2 試片製備……………………………..………………....28 3-6.3 推球試驗………………………………..……………....29 第四章、結果與討論………………………………………….………..31 4-1 Sn-9.0Zn銲料與Ag基材反應偶………………..……….….31 4-1.1 Sn-9.0Zn/Ag反應偶之界面反應…………………....….31 4-1.2 Sn-9.0Zn/Ag反應偶接點之機械性質……………..…...38 4-2 Sn-3.0Ag-0.5Cu與Ag基材反應偶…………………..….….44 4-2.1 Sn-3.0Ag-0.5Cu/Ag反應偶之界面反應…………..…....44 4-2.2 Sn-3.0Ag-0.5Cu/Ag反應偶接點之機械性質………......48 第五章、結論……………………………………………………………54 第六章、參考文獻………………..……………………………………56

[1] C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, Materials Science and Engineering Reports, 44 (2004) p.1-44.
[2] “WEEE Regulations”EU-Directive 96/EC. 2002.
[3] “RoHS Regulations”EU-Directive 95/EC. 2002.
[4] H. Hao, Y. Shi, Z. Xia, Y. Lei, F. Guo, Journal of Electronic Materials, 37 (2008) p.2-8.
[5] K. W. Moon, W. J. Boettinger, and U. R. Kattner, Journal of Electronic Materials, 29 (2000) p.1122-1136
[6] J. Mittal, S. M. Kuo, Y. W. Lin and K. L. Lin, Journal of Electronic Materials, 38 (2009) p.2436-2442.
[7] A.A. El-Daly, and A.E. Hammad, Materials Science and Engineering, 527 (2010) p.5212-5219.
[8] S. K. Das, A. Sharif, Y. C. Chan, N. B. Wong, W. K. C. Yung, Microelectronic Engineering, 86 (2009) p.2086-2093.
[9] 林定皓,「電子構裝技術概述」,台灣電路板協會 (2010)。
[10] Mater. Park, Ohio, “Electronic Materials Handbook, Vol. 1: Packaging”, ASM International, (1989).
[11] 陳信文、陳立軒、林永森、陳志銘,「電子構裝技術與材料」,高立圖書有限公司 (2005)。
[12] R. R. Tummala, E. J. Rymaszewski, published by Van Nostrand Reinhold, New York (1989).
[13] 田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社(2005)。
[14] 曾堉,金屬基材與介金屬相在無鉛銲料中溶解現象的探討,國立台灣科技大學材料科學與工程系研究所碩士論文 (2006)。
[15] S. M. Hong, J. Y. Park, J. P. Jung and C. S. Kang, Journal of Electronic Materials, 30 (2001) p.937-944.
[16] “RoHS Regulations”EU-Directive 95/EC (2002).
[17] 黃家瑋,林光隆,電子構裝無鉛銲料的現況與發展,銲接與切割,13卷2期,92年六月。
[18] Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM international, Materials Park (1985).
[19] G. J. Zhao, G. M. Sheng, L. I. Wu, X. J. Yuan, Transactions of Nonferrous Metals Society of China, 22 (2012) p.1954-1960.
[20] Y. W. Yen and W. K. Liou, Journal of Materials Research, 22 (2007) p.2663-2667.
[21] D. Q. Yu, H. P. Xie and L. Wang, Journal of Alloys and Compounds 385 (2004).
[22] K. L. Lin and T. P. Liu, Oxidation of Metals, 50 (1998) p.255-267.
[23] S. W. Chen, C. Y. Chou and Y. S. Chang, Journal of Materials Research, 21 (2006) p.1849-1856.
[24] C. F. Chen, S. K. Lahiri, P. Yuan, J. B. H. How, Electronics Packing Technology Conference, 2000.
[25] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Goesselin, S. I. Cho, J. Yu and W. K. Choi, Journal of the Minerals Metals and Materials Society, 56 (2004) 34.
[26] 劉雨雯,RoSH綠色指令:全球環境規範&無鉛銲接技術,龍璟文化 (2005)。
[27] I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, (1987).
[28] N. Saunders and A. P. Miodownik, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1990).
[29] K. S. Kim, S. H. Huh and K. Suganuma, Materials Science and Engineering, 333 (2002) p.106-114.
[30] S. K. Sen, A. Ghorai, and A.K. Bandyopadhyay, Thin Solid Film, 155 (1987) p.243~253.
[31] P. Y. Yeh, J. M. Song, and K. L. Lin, Journal of Electronic Material, 35 (2006) p.978-987.
[32] H. W.X. and Conrad. H, Scripta Metallurgica et Materialia, 30 (1994) p.725-730.
[33] 杜美瑤,反轉電流方向對界面反應的影響,國立清華大學化工所碩士論文. (2002).
[34] J. M. Song, E. C. Liu, C. L. Shih, and K. L. Lin, Journal of Electronic Material, 34 (2005) p.1249-1254.
[35] Lin, K.L., P.C. Liu, and J.M. Song, Institute of Electrical and Electronics Engineers Inc (2004).
[36] C. F. Yang, S. W. Chen, K. H. Wu, T. S. Chin, Journal of Electronic Materials, 36 (2007) p.1524-1530.
[37] J. H. L. Pang, K. H. Tan, X. Shi and Z. P. Wang, IEEE Transactions on Components and Packaging Technologies, 24 (2001) p.10-15.
[38] ASTM F1269-89, "Test Methods for Destructive Shear Testing of Ball Bonds," American Society for testing of Materials (1995).
[39] C. C. Jao, Y. W. Yen, C. Y. Lin, C. P. Lee, Intermetallics, 16 (2008) p.463-469.

[40] A. K. Gain, Y. C. Chan, N. B. Wong, Microelectronics Reliability, 49 (2009) p.746-753.
[41] 陳明宏,饒慧美,廖天龍,中華民國第七屆破壞科學研討會論文集,B4-05-1 (2000).

QR CODE