簡易檢索 / 詳目顯示

研究生: 歐佩宜
Pei-Yi Ou
論文名稱: 以模型為基礎進行氣壓肌肉致動器之設計及製作
Model-based Design and Fabrication of Pneumatic Muscle Actuators
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 楊秉祥
林紀穎
姜嘉瑞
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 氣壓肌肉致動器物理模型最小平方法參數鑑別耐久測試
外文關鍵詞: Pneumatic muscle actuator, Physical model, Least square method, Parameter identification, Durability test
相關次數: 點閱:211下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氣壓肌肉為一種高安全性之致動器,其可撓性使人體與機械之間的接觸更加安全。另外由於現今少子化的關係,使得老年人口比例逐年增高,青壯年平均負擔照顧老年人之比例也因而提高,因此期望可以將氣壓肌肉應用於義肢輔具或是復健穿戴衣物進而協助老年人或是身障人士改善其自主生活的能力。惟臺灣境內目前尚未有廠商生產氣壓肌肉致動器,若有需求皆須仰賴國外進口,如此一來不但成本相對增高,且現有國外廠商的設計不見得能完全符合穿戴輔具應用的需求。本研究之目的為研發一套低成本、高負載且耐久之氣壓肌肉,完成自製氣壓肌肉的材料挑選及以物理模型為基礎之設計分析。自製氣壓肌肉主要分成內層彈性管件、外層編織纖維網及兩端固定接頭三部分。研究中針對內層彈性管件之材質及尺寸與不同尺寸外層編織纖維網進行搭配測試,並以物理模型為基礎進行設計分析,探討不同壓力情況下氣壓肌肉本身彈性部分及總成出力的表現。物理模型中彈力相關的參數經由實驗結果利用最小平方法完成參數鑑別,並與實驗結果進行驗證。經由實驗測試,自製氣壓肌肉於5巴之操作壓力下,可承受高達170牛頓之負載。耐久測試結果則顯示自製氣壓肌肉於3巴的操作壓力下在0~100牛頓震幅及0.2赫茲的弦波負載測試下,於10,000個循環次數之後仍能維持一定的性能,收縮率最大增加量為1.59%而彈力最大下降率為16.67%。未來將以此自製氣壓肌肉所建立之物理模型為基礎發展控制法則,並應用於義肢輔具相關技術。


Pneumatic muscle is a type actuator with high safety as its pliability allows greater, proximity between the humans and the robots. In recent years, the elderly population grows rapidly whereas the birth rate reduces, resulting in an increasing dependency ratio. Therefore, the pneumatic muscles are expected to be applied to assistive technologies that enables the elders and disables to live autonomously. Unfortunately, there is no company in Taiwan producing the pneumatic muscle actuators and the imports are not only expensive but also impossible to be customized. The objective of this research is thus to develop a pneumatic muscle actuators of low cost, high power-to-volume ratio and high durability. A physics-based model is adopted for performance analysis and design of the pneumatic muscle actuators. The pneumatic muscle developed in this research includes three major parts: the inner layer elastic tube, the outer layer fiber mesh and the connectors at the two ends. The sizing and material selection of the inner and outer layers are determined based on the experimental results and the physics-based model at various pressure conditions. The parameters related to the elasticity of the pneumatic muscle in the physical model are identified based on the least square method and the overall model is validated against the force measurement at various pressures. From the test results, the developed pneumatic muscle can sustain up to 170 Nt loading under 5 bar working pressure. Durability test results show that, under the test condition of 3 bar working pressure and sinusoidal external load of 100 Nt in amplitude and 0.2 Hz in frequency, the self-made pneumatic muscle maintains its performance after 10,000 test cycles. Specifically, the contraction ratio raises less than 1.59% whereas the elastic force drops less than 16.67%. In the future, the pneumatic muscle can be applied to assistive technologies and control algorithms can be developed based on the physics-based model developed in this work.

摘要 英文摘要 致謝 目錄 圖目錄 表目錄 第一章 導論 第二章 實驗平臺與設備介紹 第三章 自製氣壓肌肉 第四章 結果與討論 第五章 結論與未來展望 附錄 參考文獻

[1] D.G.Caldwell, G.A.Medrano-Cerda, andM.Goodwin, “Control of pneumatic muscle actuators,” IEEE Control Systems, vol. 15, no. 1, pp. 40–48, 1995.
[2] B. Tondu and P. Lopez, “Modeling and control of mckibben artificial muscle robot actuators,” IEEE Control Systems, vol. 20, no. 2, pp. 15–38, 2000.
[3] P. Kocis and R. Knoflicek, “Artificial muscles: State of the art and a new technology,” MM Science Journal, vol. 2017, no. 01, pp. 1668–1673, 2017.
[4] A. H. Morin, Elastic Diaphragm, U.S. Patent No. 2642091, 1953.
[5] F. Daerden and D.Lefeber, “Pneumatic artificial muscles: actuators for robotics and automation,” European Journal of Mechanical and Environmental Engineering, vol. 47, no. 1, pp. 10–21, 2002.
[6] H. A. Baldwin, Realizable Models of Muscle Function. Proceeding of the First Rock Island Arsenal Biomechanics Symposium, New York: Springer, Boston, MA, 1969.
[7] H. F. Schulte, “The characteristics of the mckibben artificial muscle,” report, National Academy of Sciences– National Research Council, 1961.
[8] J. M. Yarlott, Fluid Actuator, U.S. Patent No. 3645173, 1972.
[9] M. Kukolj, Axially Contractible Actuator, U.S. Patent No. 4733603, 1988.
[10] T. Takagi and Y. Sakaguchi, Pneumatic Actuator for Manipulator, U.S. Patent No. 4615260, 1986.
[11] 廖健安, “智慧型外骨骼步行輔助機械: 氣壓肌肉致動系統開發,” 碩士論文, 國立雲林科技大學, 7 2013.
[12] 范偉、彭光正和黃雨, “氣動人工肌肉驅動器的研究現狀及發展趨勢,” 機床與液壓, no. 1, pp. 32–36, 2003.
[13] C.-P. Chou and B. Hannaford, “Measurement and modeling of mckibben pneumatic artificial muscles,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 90–102, 1996.
[14] N. Tsagarakis and D. G. Caldwell, “Improved modelling and assessment of pneumatic muscle actuators,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 4, pp. 3641–3646, 2000.
[15] G. K. Klute and B. Hannaford, “Accounting for elastic energy storage in mckibben
artificial muscle actuators,” Journal of Dynamic Systems, Measurement and Control,
Transactions of the ASME, vol. 122, pp. 386–388, 6 2000.
[16] 上海芯丰電氣設備有限公司, “Festo 氣動肌腱.” http://www.shrfdq.com/
76656198-9665-ac07-ae8d-3dbf204af41a/qidongjijian1.shtml, 2017.
[17] R. T. Schenider, “It looks like a piece of hose, but it’s a pneumatic tensile actuator.” http://www.hydraulicspneumatics.com/other-technologies/it-looks-piece-hose-its-pneumatic-tensile-actuator, 2002.
[18] T. Manu, “Air muscle: Powering robots.” https://materialdesigns.wordpress.com/2010/07/12/air-muscle-powering-robots/, 2010.
[19] S. R. Company, “Shadow dexterous hand.” https://www.shadowrobot.com/
products/dexterous-hand/, 2018.
[20] V. L. Nickel, J. Perry, and A. L. Garrett, “Development of useful function in the severely paralyzed hand,” JBJS, vol. 45, no. 5, pp. 933–952, 1963.
[21] T. J. Engen and L. F. Ottnat, “Upper extremity orthotics: a project report,” Orthopedic and Prosthetic Appliance Journal, vol. 21, pp. 112–127, 1967.
[22] D. W. Repperger, K. R. Johnson, and C. A. Philips, “Nonlinear feedback controller
design of a pneumatic muscle actuator system,” in Proceedings of the 1999 American
Control Conference (Cat. No. 99CH36251), vol. 3, pp. 1525–1529 vol.3, 1999.
[23] X.-R. Shen, “Nonlinear model-based control of pneumatic artificial muscle servo systems,” Control Engineering Practice, vol. 18, no. 3, pp. 311–317, 2010.
[24] A. Pujana-Arrese, A. Mendizabal, J. Arenas, R. Prestamero, and J. Landaluze, “Modelling in modelica and position control of a 1-dof set-up powered by pneumatic muscles,” Mechatronics, vol. 20, no. 5, pp. 535–552, 2010.
[25] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “Pneumatic artificial muscles:Aswitchingmodelpredictivecontrolapproach,”ControlEngineeringPractice,vol.21, no. 12, pp. 1653–1664, 2013.
[26] K. Balasubramanian and K. S. Rattan, “Fuzzy logic control of a pneumatic muscle system using a linearing control scheme,” in 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 432–436, 2003.
[27] J. H. Lilly, “Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 11, no. 3, pp. 333–339, 2003.
[28] J. H. Lilly and Y. Liang, “Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 550–558, 2005.
[29] H. Aschemann and D. Schindele, “Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3855–3864, 2008.
[30] T. V. Minh, T. Tjahjowidodo, H. Ramon, and V. H. Brussel, “Cascade position control of a single pneumatic artificial muscle–mass system with hysteresis compensation,” Mechatronics, vol. 20, no. 3, pp. 402–414, 2010.
[31] S. Ganguly, A. Garg, A. Pasricha, and S. K. Dwivedy, “Control of pneumatic artificial muscle system through experimental modelling,” Mechatronics, vol. 22, no. 8, pp. 1135–1147, 2012.
[32] T. Hesselroth, K. Sarkar, P. P. v. d. Smagt, and K. Schulten, “Neural network control of a pneumatic robot arm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 1, pp. 28–38, 1994.
[33] M. Iskarous and K. Kawamura, “Intelligent control using a neuro-fuzzy network,” in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 3, pp. 350–355 vol.3,
1995.
[34] S. W. Chan, J. H. Lilly, D. W. Repperger, and J. E. Berlin, “Fuzzy pd+i learning control for a pneumatic muscle,” in Fuzzy Systems, 2003. FUZZ ’03. The 12th IEEE International Conference on, vol. 1, pp. 278–283 vol.1, 2003.
[35] T. Noritsugu, F. Ando, and T. Yamanaka, “Rehabilitation robot using rubber artificial muscle1streportrealizationofexercisemotionmodewithimpedancecontrol,”Journal of the Robotics Society of Japan, vol. 13, no. 1, pp. 141–148, 1995.
[36] T. Noritsugu and T. Tanaka, “Application of rubber artificial muscle manipulator as a rehabilitationrobot,”IEEE/ASMETransactionsonMechatronics,vol.2,no.4,pp.259–
267, 1997.
[37] 張智星, MATLAB 程式設計入門. 清蔚科技股份有限公司, 2016.
[38] 李宜達, 控制系統設計與模擬. 全華科技圖書股份有限公司, 2003.
[39] TAIHI 泰 嗨, “乳 膠 和 橡 膠 的 區 別.” https://kknews.cc/zh-tw/news/46j4m3q.html, 2017.

無法下載圖示 全文公開日期 2023/08/17 (校內網路)
全文公開日期 2028/08/17 (校外網路)
全文公開日期 2028/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE