簡易檢索 / 詳目顯示

研究生: 吳政倫
Zheng-Lun Wu
論文名稱: 結合模糊與順滑模態控制之容錯控制研究
Study of Fault-Tolerant Control via a Combination of Fuzzy and SMC Approaches
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 吳德豐
Ter-Feng Wu
李俊賢
Jin-Shyan Lee
陳佳堃
Jia-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: T-S 模糊模型容錯控制快速終端順滑模態控制非奇異快速終端順滑模態控制
外文關鍵詞: T-S fuzzy, fault-tolerant control, fast terminal sliding mode control, nonsingular fast terminal sliding mode control
相關次數: 點閱:312下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文基於T-S模糊模型(T-S fuzzy model)結合新型態順滑面定義之快速終端順滑模態控制(fast terminal sliding mode control)與非奇異快速終端順滑模態控制(nonsingular fast terminal sliding mode control)來研究容錯控制(fault-tolerant control)。此種設計方法可以使T-S模糊模型近似原始非線性系統,而大部分系統所使用的參數採取離線方式計算,以減輕即時線上運算的負擔。所提出的快速終端順滑模態控制以及非奇異快速終端順滑模態控制也保留了傳統順滑模態控制的優點,包括系統響應速度快、簡易建構以及對於系統干擾或模型不確定性具有強健性。與傳統順滑模態控制相比,快速終端順滑模態控制與非奇異快速終端順滑模態控制可以較快速地使系統狀態在有限時間內到達控制目標點。此外,透過新型態的順滑面結構設計能夠改善順滑面的非線性項在系統狀態小於零時出現非實數的現象。最後,將所提出的容錯控制方法應用於衛星姿態穩定控制上來說明此結合技術之優點。


    Based on Takagi-Sugeno (T-S) fuzzy models, this thesis studies the fault-tolerant control (FTC) designs by using fast terminal sliding-mode control (FTSMC) and nonsingular fast terminal sliding-mode control (NFTSMC) with novel sliding surface types. The design schemes can make T-S fuzzy models approximate the original nonlinear system, and most of the T-S parameters can be offline computed to alleviate online computational burden. Both of the proposed FTSMC and NFTSMC can keep the merits of traditional sliding mode control (SMC), including fast response, easy implementation, and robustness to disturbances/uncertainties. In comparison to SMC, both FTSMC and NFTSMC can make the system states faster reach the control objective point on the sliding surface in a finite amount of time. In addition, by the novel sliding surface schemes, the control methods can improve phenomenon that the nonlinear term in the sliding surface will appear to be a non-real number while the system states are less than zero. Finally, the application to a spacecraft attitude control is illustrated to demonstrate the benefits of the proposed FTC methods.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第1章 簡介 1 1.1研究背景與動機 1 1.2論文架構 2 第2章 預備知識 3 2.1順滑模態控制 3 2.2快速終端順滑模態控制 5 2.3非奇異快速終端順滑模態控制 7 2.4 T-S模糊模型 9 第3章 容錯控制問題研究 11 3.1問題描述 13 3.2主動式容錯控制律設計 13 3.2.1 順滑模態容錯控制律設計 14 3.2.2 快速終端順滑模態容錯控制律設計 15 3.2.3 非奇異快速終端順滑模態容錯控制律設計 17 3.3建立T-S模糊模型 20 3.4基於T-S模糊模型容錯控制律設計 21 3.4.1 基於T-S模糊模型之順滑模態容錯控制律設計 21 3.4.2 基於T-S模糊模型之快速終端順滑模態控制律設計 23 3.4.3 基於T-S模糊模型之非奇異快速終端順滑模態控制律設計 25 第4章 衛星姿態穩定控制 28 4.1衛星動態 28 4.2錯誤偵測與診斷機制觀察器 30 4.3 T-S模糊模型 31 4.4模擬結果 37 第5章 結論與未來研究方向 62 5.1結論 62 5.2未來研究方向 62 參考文獻 63

    [1] Y.-W. Liang, S.-D. Xu, and C.-L. Tsai, “Study of VSC reliable designs with application to spacecraft attitude stabilization,” IEEE Trans. Control Systems Technology, vol. 15, no. 2, pp. 332-338, 2007.
    [2] X. Dai, Z. Gao, T. Breikin, and H. Wang, “Disturbance attenuation in fault detection of gas turbine engines: a discrete robust observer design,” IEEE Trans. Syst., Man, Cybern., Part C: Applications and Reviews, vol. 39, no. 2, pp. 234-239, 2009.
    [3] Z. Ping, and S. X. Ding, “Influence of sampling period on a class of optimal fault-detection performance,” IEEE Trans. Automatic Control, vol. 54, no. 6, pp. 1396-1402, 2009.
    [4] S. X. Ding, G. Yang, P. Zhang, E. L. Ding, T. Jeinsch, N. Weinhold, and M. Schultalbers, “Feedback control structures, embedded residual signals, and feedback control schemes with an integrated residual access,” IEEE Trans. Control Systems Technology, vol. 18, no. 2, pp. 352-367, 2010.
    [5] Q. Dong, M. Zhong, and S. X. Ding,“H∞ fault fault estimation for a class of linear time-delay systems in finite frequency domain,” Journal of Systems Engineering and Electronics, vol. 21, no. 5, pp. 835-841, 2010.
    [6] G. Spagnuolo, G. Petrone, S. V. Araujo, C. Cecati, F.-M. Erik, E. Gubia, D. Hissel, M. Jasinski, W. Knapp, M. Liserre, P. Rodriguez, R. Teodorescu, and P. Zacharias, “Renewable energy operation and conversion schemes: a summary of discussions during the seminar on renewable energy systems,” IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 38-51, 2010.
    [7] M. Zhong, S. X. Ding, Q.-L. Han, and Q. Ding, “Parity space-based fault estimation for linear discrete time-varying systems,” IEEE Trans. Automatic Control, vol. 55, no. 7, pp. 1726-1731, 2010.
    [8] M. Zhong, D. Zhou, and S. X. Ding,“On designing H∞ fault detection filter for linear discrete time-varying systems,” IEEE Trans. Automatic Control, vol. 55, no. 7, pp. 1689-1695, 2010.
    [9] X. Hu, H. Gao, H. R. Karimi, L. Wu, and C. Hu, “Fuzzy reliable tracking control for flexible air-breathing hypersonic vehicles,” International Journal of Fuzzy Systems, vol. 13, no. 4, pp. 323-334, 2011.
    [10] X. Yu, C. Cecati, T. Dillon, and M. G. Simoes, “The new frontier of smart grids,” IEEE Industrial Electronics Magazine, vol. 5, no. 3, pp. 49-63, 2011.
    [11] X. Dai, Z. Gao, T. Breikin, and H. Wang, “High-gain observer-based estimation of parameter variations with delay alignment,” IEEE Trans. Automatic Control, vol. 57, no. 3, pp. 726-732, 2012.
    [12] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, “Smart grid and smart homes: key players and pilot projects,” IEEE Industrial Electronics Magazine, vol. 6, no. 4, pp. 18-34, 2012.
    [13] C. Hua, and S. X. Ding, “Decentralized networked control system design using T-S fuzzy approach,” IEEE Trans. Fuzzy Systems, vol. 20, no. 1, pp. 9-21, 2012.
    [14] S. H. Yoon, Y. D. Kim, and S. H. Park, “Constrained adaptive backstepping controller design for aircraft landing in wind disturbance and actuator stuck,” International Journal of Aeronautical and Space Sciences, vol. 13, no. 1, pp. 74-89, 2012.
    [15] M. Chadli, S. Aouaouda, H. R. Karimi, and P. Shi, “Robust fault tolerant tracking controller design for a VTOL aircraft,” Journal of the Franklin Institute, vol. 350, no. 9, pp. 2627-2645, 2013.
    [16] X. Dai, and Z. Gao, “From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis,” IEEE Trans. Industrial Informatics, vol. 9, no. 4, pp. 2226-2238, 2013.
    [17] S. X. Ding, P. Zhang, S. Yin, and E. L. Ding, “An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications,” IEEE Trans. Industrial Informatics, vol. 9, no. 1, pp. 462-471, 2013.
    [18] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, “A survey on smart grid potential applications and communication requirements,” IEEE Trans. Industrial Informatics, vol. 9, no. 1, pp. 28-42, 2013.
    [19] J. Ying, F. Jun, Y. Zhang, and Y. Jing, “Reliable control of a class of switched cascade nonlinear systems with its application to flight control,” Nonlinear Analysis: Hybrid Systems, vol. 11, pp. 11-21, 2014.
    [20] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.
    [21] D. W. C. Ho, and Y. Niu, “Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control,” IEEE Trans. Fuzzy Systems, vol. 15, no. 3, pp. 350-358, 2007.
    [22] Y.-W. Liang, S.-D. Xu, D.-C. Liaw, and C.-C. Chen, “A study of T-S model-based SMC scheme with application to robot control,” IEEE Trans. Industrial Electronics, vol. 55, no. 11, pp. 3964-3971, 2008.
    [23] Y.-W. Liang, S.-D. Xu, and L.-W. Ting, “T-S model-based SMC reliable design for a class of nonlinear control systems,” IEEE Trans. Industrial Electronics, vol. 56, no. 9, pp. 3286-3295, 2009.
    [24] J. Zhang, P. Shi, and Y. Xia, “Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties,” IEEE Trans. Fuzzy Systems, vol. 18, no. 4, pp. 700-711, 2010.
    [25] Z. Xi, G. Feng, and T. Hesketh, “Piecewise sliding-mode control for T-S fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 19, no. 4, pp. 707-716, 2011.
    [26] N. T.-T. Vu, D.-Y. Yu, H. H. Choi, and J.-W. Jung, “T-S fuzzy-model-based sliding-mode control for surface-mounted permanent-magnet synchronous motors considering uncertainties,” IEEE Trans. Industrial Electronics, vol. 60, no. 10, pp. 4281-4291, 2013.
    [27] Q. Gao, G. Feng, Z. Xi, Y. Wang, and J. Qiu, “Robust H∞ control of T-S fuzzy time-delay systems via a new sliding-mode control scheme,”IEEE Trans. Fuzzy Systems, vol. 22, no. 2, pp. 459-465, 2014.
    [28] Y.-W. Liang, and S.-D. Xu, “Reliable control of nonlinear systems via variable structure scheme,” IEEE Trans. Automatic Control, vol. 51, no. 10, pp. 1721-1726, 2006.
    [29] N. K. Lincoln, and S. M. Veres, “Application of discrete time sliding mode control to a spacecraft in 6DoF with parameter identification,” International Journal of Control, vol. 83, no. 11, pp. 2217-2231, 2010.
    [30] Y. Xia, Z. Zhu, M. Fu, and S. Wang, “Attitude tracking of rigid spacecraft with bounded disturbances,” IEEE Trans. Industrial Electronics, vol. 58, no. 2, pp. 647-659, 2011.
    [31] Z. Zhu, Y. Xia, and M. Fu, “Adaptive sliding mode control for attitude stabilization with actuator saturation,” IEEE Trans. Industrial Electronics, vol. 58, no. 10, pp. 4898-4907, 2011.
    [32] B. Xiao, Q. Hu, and Y. Zhang, “Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation,” IEEE Trans. Control Systems Technology, vol. 20, no. 6, pp. 1605-1612, 2012.
    [33] A. Zhang, Q. Hu, and M. I. Friswell, “Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults,” IET Control Theory and Applications, vol. 7, no. 16, pp. 2007-2020, 2013.
    [34] Y. Feng, X. H. Yu, and Z. H. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159-2167, Dec, 2002.
    [35] M. Zak, “Terminal attractors for addressable memory in neural networks,” Physics Letters A, vol. 133, no. 1–2, pp. 18-22, 1988.
    [36] X. Yu, and M. Zhihong, “Fast terminal sliding-mode control design for nonlinear dynamical systems,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 49, no. 2, pp. 261-264, 2002.
    [37] S. Yu, X. Yu, B. Shirinzadeh, and M. Zhihong, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no. 11, pp. 1957-1964, 2005.
    [38] W. Xiang, and Y. Huangpu, “Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp. 3241-3247, 2010.
    [39] A.-M. Zou, K. D. Kumar, Z.-G. Hou, and L. Xi, “Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 4, pp. 950-963, 2011.
    [40] K. Li, J. Cao, and F. Yu, “Adaptive longitudinal friction control based on nonsingular and fast terminal sliding mode method,” WSEAS Trans. SYSTEMS, vol. 11, no. 8, 2012.
    [41] A.-M. Zou, and K. D. Kumar, “Distributed attitude coordination control for spacecraft formation flying,” IEEE Trans. Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1329-1346, 2012.
    [42] G. Zhao, “Fractional-order fast terminal sliding mode control for a class of dynamical systems,” Mathematical Problems in Engineering, vol. 2013, pp. 10, 2013.
    [43] W. Tang, Z. Rui, and J. Zhang, “High-order sliding mode design based on geometric homogeneity and fast terminal sliding mode,” WSEAS Trans. Systems, vol. 13, 2014.
    [44] X. Yang, H. Zhao, Y. Zhang, and X. Liu, “Carrying lower extreme exoskeleton rapid terminal sliding-mode robust control,” Journal of Computers, vol. 9, no. 1, 2014.
    [45] E. Zheng, and J. Xiong, “Quad-rotor unmanned helicopter control via novel robust terminal sliding mode controller and under-actuated system sliding mode controller,” Optik, vol. 125, no. 12, 2014.
    [46] L. Yang, and J. Yang, “Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems,” International Journal of Robust and Nonlinear Control, vol. 21, no. 16, pp. 1865-1879, 2011.
    [47] H. Li, L. Dou, and Z. Su, “Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator,” International Journal of Systems Science, vol. 44, no. 3, pp. 401-415, 2011.
    [48] P. M. Tiwari, S. Janardhanan, and M. U. Nabi, “Spacecraft attitude control using non–singular finite time convergence fast terminal sliding mode,” International Journal of Instrumentation Technology, vol. 1, no. 2, pp. 124-142, 2012.
    [49] Y. Yang., C. Hua, and X. Guan, “Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system,” IEEE Trans. Fuzzy Systems, vol. 22, no. 3, pp. 631-641, 2013.
    [50] C. Han, L. Yang, and J. Zhang, “Adaptive nonsingular fast terminal sliding mode control for aircraft with center of gravity variations,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014.

    無法下載圖示 全文公開日期 2019/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE