簡易檢索 / 詳目顯示

研究生: 曾紹凱
Shao-Kai Tseng
論文名稱: 高性能雙永磁同步電動機驅動系統的研製
Design and Implementation of High Performance Dual-Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
none
許源浴
none
廖聰明
none
林法正
none
楊勝明
none
劉益華
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 167
中文關鍵詞: 雙永磁同步電動機系統最大效率控制預測型控制器容錯控制
外文關鍵詞: dual-PMSM drive system, maximum efficiency control, predictive controller, fault tolerant control
相關次數: 點閱:489下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一部雙永磁同步電動機驅動系統,提高系統的效率及延伸定轉矩下的控速範圍。所提的驅動系統,可以分別控制在低速操作模式及高速操作模式。低速操作模式係以兩部電動機共同承擔負載,本文適時地調整兩部電動機的分配率,使整個驅動系統操作在最大效率。另一方面,高速模式時,其中一部電動機維持在靜止狀態,並使用定子繞組作為升壓轉換器的儲能電感,以期提高直流鏈電壓,延伸另一部電動機定轉矩區的高速運轉範圍。此外,亦探討能量回收的研究,使雙電動機驅動系統能在煞車時,將能量回充至電池,進行能量回收並降低充電電流的漣波。
    本文設計預測型速度控制器及預測型電流控制器,以改善驅動系統的快速暫態響應、加載調節響應及追蹤響應。最後,提出容錯控制,當偵測出其中一個變頻器的某個功率元件發生短路或開路故障時,提出簡單的方法,使故障後能產生接近故障前的輸出轉矩,有效地改善雙電動機驅動系統的可靠度。
    本文以德州儀器公司生產的數位信號處理器,TMS-320-F2808作為控制核心,實現所提控制法則。實測結果說明所提方法的正確性及可行性。所提方法容易實現,適合電動車等相關應用。


    This dissertation proposes a dual-permanent-magnect-synchronous- motor drive system to increase its efficiency and to extend its constant-torque operation speed range. The proposed drive system can be separately operated at a low-speed operation mode and a high-speed operation mode. In the low-speed operation mode, the output torque is shared by the dual motors. A maximum efficiency control is proposed by suitably adjusting the distribution ratio between the two motors, so a maximum efficiency of the whole drive system can be achieved. In the high-speed operation mode, one motor is maintained at standstill and its stator windings are used as inductances of a boost converter to increase the dc-bus voltage. As a result, the second motor can extend its constant-torque high speed operation range. In addition, the energy recovery is investigated to charge the batteries and to reduce charging current ripple during a braking action.
    A predictive speed-loop controller and a predictive current-loop controller are designed to improve the fast transient responses, load regulation responses, and tracking responses. Finally, a fault tolerant control method is investigated. When a power device of the inverter is short circuited or open circuited, a simple method is proposed to make the output torque keep near a constant; therefore, the reliability of the drive system can be improved.
    A digital signal processor, TMS-320-F-2808, is used as a control conter to realize the proposed control methods. Experimental results can validate the correctness and feasibility of the proposed method. The proposed method can be applied in electric vehicle because of its simplicity.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 3 1.3目的及貢獻 9 1.4大綱 12 第二章 永磁同步電動機 13 2.1簡介 13 2.2結構及特性 13 2.3數學模式 17 2.4參數量測 24 第三章 雙電動機的驅控方法 30 3.1簡介 30 3.2電動機的效率分析 34 3.3雙電動機驅動系統提升效率的控制 39 3.4雙電動機的高、低速驅動方法 42 3.4.1低速驅動方法 42 3.4.2高速驅動方法 50 3.5雙電動機的再生煞車方法 56 3.5.1低速再生煞車 56 3.5.2高速再生煞車 56 第四章 雙電動機系統預測型控制器的設計 60 4.1簡介 60 4.2原理簡介 61 4.3預測型速度控制器 63 4.4預測型電流控制器 72 第五章 雙電動機驅動系統的容錯控制 76 5.1簡介 76 5.2容錯控制方法 77 第六章 系統研製 86 6.1簡介 86 6.2硬體電路製作 89 6.2.1三相變頻器電路 89 6.2.2偵測電路 92 6.2.3 CAN Bus通訊電路 95 6.2.4數位信號處理器 97 6.2.5電磁離合器 99 6.3軟體程式設計 100 6.3.1主程式 100 6.3.2中斷副程式 101 第七章 實測結果 105 7.1簡介 105 7.2實測結果 108 第八章 結論與未來研究方向 154 參考文獻 156 作者簡介 168

    [1] S. Williamson, M. Lukic, and A. Emadi, “Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 730-740, May 2006.
    [2] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 763-770, May 2005.
    [3] S. G. Wirasingha, and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 111-122, Jan. 2011.
    [4] J. d. Santiago, H. Bernhoff, B. Ekerg, rd, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, “Electrical motor drivelines in commercial all-electric vehicles: a review,” IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 475-484, Feb. 2012.
    [5] R. J. Hamilton, “DC motor brush life,” IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1682-1687, Nov./Dec. 2000.
    [6] W. Tiecheng, Z. Ping, Z. Qianfan, and C. Shukang, “Design characteristics of the induction motor used for hybrid electric vehicle,” IEEE Transactions on Magnetics, vol. 41, no. 1, pp. 505-508, Jan. 2005.
    [7] M. A. Rahman, “History of interior permanent magnet motors,” IEEE Industry Applications Magazine, vol. 19, no. 1, pp. 10-15, Jan./Feb. 2013.
    [8] K. T. Chau, C. C. Chan, and C. Liu, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246-2257, June 2008.
    [9] S. Almeida and R. E. Araujo, “Fault-tolerant control using sliding mode techniques applied to multi-motor electric vehicle,” IEEE IECON-2013, pp. 3530-3535, Nov. 2013.
    [10] Y. Cheng, R. Trigui, C. Espanet, A. Bouscayrol, and S. Cui, “Specifications and design of a PM electric variable transmission for Toyota Prius II,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4106-4114, Nov. 2011.
    [11] N. Mutoh, “Driving and braking torque distribution methods for front- and rear-wheel-independent drive-type electric vehicles on roads with low friction coefficient,” IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3919-3933, Oct. 2012.
    [12] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proceedings of the IEEE, vol. 95, no. 4, pp. 704-718, Apr. 2007.
    [13] H. Liu, Z. Q. Zhu, E. Mohamed, Y. Fu, and X. Qi, “Flux-weakening control of nonsalient pole PMSM having large winding inductance, accounting for resistive voltage drop and inverter nonlinearities,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 942-952, Feb. 2012.
    [14] I. Aharon, and A. Kuperman, “Topological overview of powertrains for battery-powered vehicles with range extenders,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 868-876, Mar. 2011.
    [15] M. J. Yang, H. L. Jhou, B. Y. Ma, and K. K. Shyu, “A cost-effective method of electric brake with energy regeneration for electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2203-2212, June 2009.
    [16] T. A. Minav, J. J. Pyrhonen, and L. I. E. Laurila, “Permanent magnet synchronous machine sizing: effect on the energy efficiency of an electro-hydraulic forklift,” IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2466-2474, June 2012.
    [17] K. Chen, A. Bouscayrol, A. Berthon, P. Delarue, D. Hissel, and R. Trigui, “Global modeling of different vehicles,” IEEE Vehicular Technology Magazine, vol. 4, no. 2, pp. 80-89, June 2009.
    [18] M. N. Uddin, M. A. Abido, and M. A. Rahman, “Real-time performance evaluation of a genetic-algorithm-based fuzzy logic controller for IPM motor drives,” IEEE Transactions on Industry Applications, vol. 41, no. 1, pp. 246-252, Jan./Feb. 2005.
    [19] S. Li, and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed-regulation system,” IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 767-779, Nov. 2012.
    [20] K. Kyeong-Hwa, and Y. Myung-Joong, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Transactions on Industrial Electronics, vol. 49, no. 3, pp. 524-535, June 2002.
    [21] H. Liu, and S. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1171-1183, Feb. 2012.
    [22] S. Bolognani, M. Zordan, and M. Zigliotto, “Experimental fault-tolerant control of a PMSM drive,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1134-1141, Oct. 2000.
    [23] Z. Wang, J. Chen, M. Cheng, and Y. Zheng, “Fault-tolerant control of paralleled-voltage-source-inverter-fed PMSM drives,” IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4749-4760, Aug. 2015.
    [24] A. Gaeta, G. Scelba, and A. Consoli, “Sensorless vector control of PM synchronous motors during single-phase open-circuit faulted conditions,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 1968-1979, Nov./Dec. 2012.
    [25] A. Gaeta, G. Scelba, and A. Consoli, “Modeling and control of three-phase PMSMs under open-phase fault,” IEEE Transactions on Industry Applications, vol. 49, no. 1, pp. 74-83, Jan./Feb. 2013.
    [26] E. Ledezma, B. McGrath, A. Munoz, and T. A. Lipo, “Dual AC-drive system with a reduced switch count,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1325-1333, Sep./Oct.2001.
    [27] K. Matsuse, Y. Kouno, H. Kawai, and S. Yokomizo, “A speed-sensorless vector control method of parallel-connected dual induction motor fed by a single inverter,” IEEE Transactions on Industry Applications, vol. 38, no. 6, pp. 1566-1571, Nov./Dec. 2002.
    [28] L. Tang, and G. J. Su, “High-performance control of two three-phase permanent-magnet synchronous machines in an integrated drive for automotive applications,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 3047-3055, Nov. 2008.
    [29] J. Zhang, X. Wen, and L. Zeng, “Optimal system efficiency operation of dual PMSM motor drive for fuel cell vehicles propulsion,” IEEE PEMC-2009, pp. 1889-1892, May 2009.
    [30] Y. Hua, J. Zhang, and X. Wen, “High power dual motor drive system used in fuel cell vehicles,” IEEE VPPC-2008, pp. 1-4, Sep. 2008.
    [31] H. Lee, and Y. Choi, “A new actuator system using dual-motors and a planetary gear,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 1, pp. 192-197, Feb. 2012.
    [32] I. X. Bogiatzidis, A. N. Safacas, E. D. Mitronikas, and G. A. Christopoulos, “A novel control strategy applicable for a dual AC drive with common mechanical load,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2022-2036, Nov./Dec. 2012.
    [33] B. Akin, M. Bhardwaj, and S. Choudhury, “An integrated implementation of two-phase interleaved PFC and dual motor drive using single MCU with CLA,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2082-2091, Nov. 2013.
    [34] O. Wallmark, L. Harnefors, and O. Carlson, “Control algorithms for a fault-tolerant PMSM drive,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1973-1980, Aug. 2007.
    [35] C. S. Lim, N. A. Rahim, W. P. Hew, and E. Levi, “Model predictive control of a two-motor drive with five-leg-inverter supply,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 54-65, Jan. 2013.
    [36] W. Wang, M. Cheng, B. Zhang, Y. Zhu, and S. Ding, “A fault-tolerant permanent-magnet traction module for subway applications,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1646-1658, Apr. 2014.
    [37] H. Hong, and C. Liuchen, “Electrical two-speed propulsion by motor winding switching and its control strategies for electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 48, no. 2, pp. 607-618, Mar. 1999.
    [38] S. Sadeghi, L. Guo, H. A. Toliyat, and L. Parsa, “Wide operational speed range of five-phase permanent magnet machines by using different stator winding configurations,” IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2621-2631, June 2012.
    [39] M. N. Uddin, and M. M. I. Chy, “Online parameter-estimation-based speed control of PM AC motor drive in flux-weakening region,” IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1486-1494, Sep./ Oct. 2008.
    [40] S. M. Sue, and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 340-347, Jan. 2008.
    [41] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2382-2389, Nov./Dec.2012.
    [42] K. Baoquan, L. Chunyan, and C. Shukang, “Flux-weakening- characteristic analysis of a new permanent-magnet synchronous motor used for electric vehicles,” IEEE Transactions on Plasma Science, vol. 39, no. 1, pp. 511-515, Jan. 2011.
    [43] A. Sarikhani, and O. A. Mohammed, “Demagnetization control for reliable flux weakening control in PM synchronous machine,” IEEE Transactions on Energy Conversion, vol. 27, no. 4, pp. 1046-1055, Dec. 2012.
    [44] M. S. Kwak and S. K. Sul, “Flux weakening control of an open winding machine with isolated dual inverters,” IEEE-IAS 2007 Annual Meeting, pp. 251-255, Sep. 2007.
    [45] Y. Lee, and J. I. Ha, “Hybrid modulation of dual inverter for open-end permanent magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3286-3299, June 2015.
    [46] K. Yamamoto, K. Shinohara, and H. Makishima, “Comparison between flux weakening and PWM inverter with voltage booster for permanent magnet synchronous motor drive,” IEEE PCC-Osaka-2002, pp. 161-166, Apr. 2002.
    [47] S. M. Sue, J. H. Liaw, Y. S. Huang, and Y. H. Liao, “Design and implementation of a dynamic voltage boosting drive for permanent magnet synchronous motors,” IEEE IPEC- 2010, pp. 1398-1402, June 2010.
    [48] M. C. Chou, and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 2, pp. 1359-1373, Apr. 2014.
    [49] N. Urasaki, T. Senjyu, and K. Uezato, “Investigation of influences of various losses on electromagnetic torque for surface-mounted permanent magnet synchronous motors,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 131-139, Jan. 2003.
    [50] A. Boglietti, R. Bojoi, A. Cavagnino, and A. Tenconi, “Efficiency analysis of PWM inverter fed three-phase and dual three-phase high frequency induction machines for low/medium power applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 2015-2023, May 2008.
    [51] J. Lee, K. Nam, S. Choi, and S. Kwon, “Loss-minimizing control of PMSM with the use of polynomial approximations,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1071-1082, Apr. 2009.
    [52] F. L. Mapelli, D. Tarsitano, and M. Mauri, “Plug-in hybrid electric vehicle: modeling, prototype realization, and inverter losses reduction analysis,” IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 598-607, Feb. 2010.
    [53] M. N. Uddin, and R. S. Rebeiro, “Online efficiency optimization of a fuzzy-logic-controller-based IPMSM drive,” IEEE Transactions on Industry Applications, vol. 47, no. 2, pp. 1043-1050, Mar./Apr. 2011.
    [54] N. Mutoh, Y. Hayano, H. Yahagi, and K. Takita, “Electric braking control methods for electric vehicles with independently driven front and rear wheels,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1168-1176, Apr. 2007.
    [55] M. Ye, Z. Bai, and B. Cao, “Robust control for regenerative braking of battery electric vehicle,” IET Control Theory & Applications, vol. 2, no. 12, pp. 1105-1114, Dec. 2008.
    [56] H. Seki, K. Ishihara, and S. Tadakuma, “Novel regenerative braking control of electric power-assisted wheelchair for safety downhill road driving,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1393-1400, May 2009.
    [57] M. Schmitz, C. Maag, M. Jagiellowicz, and M. Hanig, “Impact of a combined accelerator-brake pedal solution on efficient driving,” IET Intelligent Transport Systems, vol. 7, no. 2, pp. 203-209, June 2013.
    [58] X. Nian, F. Peng, and H. Zhang, “Regenerative braking system of electric vehicle driven by brushless DC motor,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5798-5808, Oct. 2014.
    [59] K. H. Kim, “Nonlinear speed control for a PM synchronous motor with a sequential parameter auto-tuning algorithm,” IEE Proceedings - Electric Power Applications, vol. 152, no. 5, pp. 1253-1262, Sep. 2005.
    [60] J. R. Dominguez, A. Navarrete, M. A. Meza, A. G. Loukianov, and J. Canedo, “Digital sliding-mode sensorless control for surface-mounted PMSM,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 137-151, Feb. 2014.
    [61] H. H. Choi, V. Q. Leu, Y. s. Choi, and J. w. Jung, “Adaptive speed controller design for a permanent magnet synchronous motor,” IET Electric Power Applications, vol. 5, no. 5, pp. 457-464, May 2011.
    [62] F. J. Lin, K. J. Yang, I. F. Sun, and J. K. Chang, “Intelligent position control of permanent magnet synchronous motor using recurrent fuzzy neural cerebellar model articulation network,” IET Electric Power Applications, vol. 9, no. 3, pp. 248-264, Mar. 2015.
    [63] L. He, T. Shen, L. Yu, N. Feng, and J. Song, “A model-predictive- control-based torque demand control approach for parallel hybrid powertrains,” IEEE Transactions on Vehicular Technology, vol. 62, no. 3, pp. 1041-1052, Mar. 2013.
    [64] R. Nalepa, and T. Orlowska-Kowalska, “Optimum trajectory control of the current vector of a nonsalient-pole PMSM in the field-weakening region,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2867-2876, July 2012.
    [65] M. Jafarboland, and J. Faiz, “Modelling and designing controller of two different mechanical coupled motors for enhancement of underwater vehicles performance,” IET Electric Power Applications, vol. 4, no. 7, pp. 525-538, Aug. 2010.
    [66] J. I. Itoh and T. Ogura, “Evaluation of total loss for an inverter and motor by applying modulation strategies,” IEEE PEMC-2010, pp. S12-21-S12-28, Sep. 2010.
    [67] D. Sato and J. I. Itoh, “Total loss comparison of inverter circuit topologies with interior permanent magnet synchronous motor drive system,” IEEE ECCE-2013, pp. 537-543, June 2013.
    [68] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, “Predictive control in power electronics and drives,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
    [69] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model predictive control—a simple and powerful method to control power converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826-1838, June 2009.
    [70] M. Preindl, and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 1007-1015, Feb. 2013.
    [71] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1925-1936, June 2009.
    [72] Texas Instruments, TMS320x280x Digital Signal Precessors, 2002.
    [73] L. Wei, L. Anhua, and W. Huijie, “Anisotropic fracture behavior of sintered rare-earth permanent magnets,” IEEE Transactions on Magnetics, vol. 41, no. 8, pp. 2339-2342, Aug. 2005.
    [74] C. Lin, S. Guo, W. Fu, R. Chen, D. Lee, and A. Yan, “Dysprosium diffusion behavior and microstructure modification in sintered Nd-Fe-B magnets via dual-alloy method,” IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 3233-3236, July 2013.
    [75] S. Ruoho, M. Haavisto, E. Takala, T. Santa-Nokki, and M. Paju, “Temperature dependence of resistivity of sintered rare-earth permanent-magnet materials,” IEEE Transactions on Magnetics, vol. 46, no. 1, pp. 15-20, Jan. 2010.
    [76] K. Fujisaki, and S. Satoh, “Numerical calculations of electromagnetic fields in silicon steel under mechanical stress,” IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 1820-1825, July 2004.
    [77] J. Chen, D. Wang, S. Cheng, Y. Wang, Y. Zhu, and Q. Liu, “Modeling of temperature effects on magnetic property of nonoriented silicon steel lamination,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Nov. 2015.
    [78] T. Matsuo, and M. Shimasaki, “Simple modeling of the AC hysteretic property of a grain-oriented silicon steel sheet,” IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 919-922, Apr. 2006.
    [79] H. Toda, Y. Oda, M. Kohno, M. Ishida, and Y. Zaizen, “A new high flux density non-oriented electrical steel sheet and its motor performance,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3060-3063, Nov. 2012.
    [80] P. Sekerak, V. Hrabovcova, J. Pyrhonen, L. Kalamen, P. Rafajdus, and M. Onufer, “Comparison of synchronous motors with different permanent magnet and winding types,” IEEE Transactions on Magnetics, vol. 49, no. 3, pp. 1256-1263, Mar. 2013.
    [81] D. S. More, and B. G. Fernandes, “Power density improvement of three phase flux reversal machine with distributed winding,” IET Electric Power Applications, vol. 4, no. 2, pp. 109-120, Feb. 2010.
    [82] K. Yamazaki, Y. Fukushima, and M. Sato, “Loss analysis of permanent-magnet motors with concentrated windings—variation of magnet eddy-current loss due to stator and rotor shapes,” IEEE Transactions on Industry Applications, vol. 45, no. 4, pp. 1334-1342, July/Aug. 2009.
    [83] J. Asama, M. Amada, M. Takemoto, A. Chiba, T. Fukao, and A. Rahman, “Voltage characteristics of a consequent-pole bearingless PM motor with concentrated windings,” IEEE Transactions on Magnetics, vol. 45, no. 6, pp. 2823-2826, June 2009.
    [84] L. Hyung-Woo, P. Chan-Bae, and L. Byung-Song, “Performance comparison of the railway traction IPM motors between concentrated winding and distributed winding,” IEEE ITEC-2012, pp. 1-4, June 2012.
    [85] T. Y. Chou, T. H. Liu, and T. T. Cheng, “Sensorless micro-permanent magnet synchronous motor control system with a wide adjustable speed range,” IET Electric Power Applications, vol. 6, no. 2, pp. 62-72, Feb. 2012.
    [86] C. Koechli and Y. Perriard, “Analytical model for slotless permanent magnet axial flux motors,” IEEE IEMDC-2013, pp. 788-792, May 2013.
    [87] L. Haiwei, Z. Jianguo, and G. Youguang, “Development of a slotless tubular linear interior permanent magnet micro motor for robotic applications,” IEEE INTERMAG Asia-2005, pp. 209-210, Apr. 2005.
    [88] S. L. Wang and T. Y. Chueh, “Research of permanent magnetic brushless motor on epoxy resin with Taguchi method,” IEEE CECNet-2012, pp. 3423-3424, Apr. 2012.
    [89] M. Kazerooni, S. Hamidifar, and N. C. Kar, “Analytical modelling and parametric sensitivity analysis for the PMSM steady-state performance prediction,” IET Electric Power Applications, vol. 7, no. 7, pp. 586-596, Aug. 2013.
    [90] H. Hahn, and M. Niebergall, “Development of a measurement robot for identifying all inertia parameters of a rigid body in a single experiment,” IEEE Transactions on Control Systems Technology, vol. 9, no. 2, pp. 416-423, Mar. 2001.
    [91] C. Kuan-Teck, L. Teck-Seng, and L. Tong-Heng, “An optimal speed controller for permanent-magnet synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 41, no. 5, pp. 503-510, Oct. 1994.
    [92] B. Alecsa, M. N. Cirstea, and A. Onea, “Simulink modeling and design of an efficient hardware-constrained FPGA-based PMSM speed controller,” IEEE Transactions on Industrial Informatics, vol. 8, no. 3, pp. 554-562, Aug. 2012.
    [93] B. Tabbache, A. Kheloui, and M. E. H. Benbouzid, “An adaptive electric differential for electric vehicles motion stabilization,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 104-110, Jan. 2011.
    [94] H. Zayyani, M. Babaie-Zadeh, and C. Jutten, “An iterative bayesian algorithm for sparse component analysis in presence of noise,” IEEE Transactions on Signal Processing, vol. 57, no. 11, pp. 4378-4390, Nov. 2009.
    [95] P. Arabshahi, R. J. Marks, O. Seho, T. P. Caudell, J. J. Choi, and S. Bong-Gee, “Pointer adaptation and pruning of min-max fuzzy inference and estimation,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 9, pp. 696-709, Sep. 1997.
    [96] W. C. Lin, C. L. Lin, P. M. Hsu, and M. T. Wu, “Realization of anti-lock braking strategy for electric scooters,” IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2826-2833, June 2014.
    [97] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,“ Control Engineering Practice, vol. 11, pp. 733-764, July 2003.
    [98] M. Preindl, and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1912-1921, Nov. 2013.
    [99] M. Preindl, and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 2: field weakening operation,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 648-657, May 2013.
    [100] J. Weigold, and M. Braun, “Predictive current control using identification of current ripple,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4346-4353, Dec. 2008.
    [101] L. P. Wang, Model Predictive Control System Design and Implementation Using MATLAB®, Springer, 2009.
    [102] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault-tolerant control for six-phase PMSM Drive system via intelligent complementary sliding-mode control using TSKFNN-AMF,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5747-5762, Dec. 2013.
    [103] X. Jiang, W. Huang, R. Cao, Z. Hao, and W. Jiang, “Electric drive system of dual-winding fault-tolerant permanent-magnet motor for aerospace applications,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7322-7330, Dec. 2015.
    [104] R. R. Errabelli, and P. Mutschler, “Fault-tolerant voltage source inverter for permanent magnet drives,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 500-508, Feb. 2012.
    [105] R. L. d. A. Ribeiro, C. B. Jacobina, E. R. C. d. Silva, and A. M. N. Lima, “Fault detection of open-switch damage in voltage-fed PWM motor drive systems,” IEEE Transactions on Power Electronics, vol. 18, no. 2, pp. 587-593, Mar. 2003.
    [106] M. Alavi, D. Wang, and M. Luo, “Short-circuit fault diagnosis for three-phase inverters based on voltage-space patterns,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5558-5569, Oct. 2014.

    無法下載圖示 全文公開日期 2018/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE