簡易檢索 / 詳目顯示

研究生: 王亭予
Ting-Yu Wang
論文名稱: 可應用於電阻式隨機存取記憶體之厚度低於10奈米(HfCuAlTi)Ox薄膜的無電致成形電阻轉換特性研究
Forming free resistive switching characteristics of amorphous sub-10 nm (HfCuAlTi)Ox thin films for resistive random access memory (RRAM) application
指導教授: 朱瑾
Jinn P. Chu
口試委員: 郭東昊
Dong-Hau Kuo
王錫福
Sea-Fue Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 86
中文關鍵詞: 電阻式隨機存取記憶體非晶 (HfCuAlTi)Ox單極性電阻轉換氧空缺無電致成形
外文關鍵詞: resistive random access memory (RRAM), amorphous (HfCuAlTi)Ox, unipolar resistive switching, oxygen vacancy, forming-free
相關次數: 點閱:216下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物電阻式隨機存取記憶體(RRAM)是下一代非揮發性記憶體中最有潛力得候選人之一,其研究和發展引起相當大的關注,由於具有低成本、低耗能、操作速度快、保存資料能力佳等優點外,結構簡單也是一大特色,一般以金屬/絕緣層/金屬的MIM 結構為主,也可以兼容於傳統的互補式金屬氧化物半導體(CMOS)。然而,隨著現今半導體元件尺寸持續的縮小,若絕緣層為結晶結構,在操作過程中,將有漏電流會發生在晶粒邊界上,其不利於元件性能。本研究中,為了盡量減少漏電流產生,製備非晶金屬氧化物絕緣層以達到減少漏電流來優化元件。因此,我們研究非晶(HfCuAlTi)OX多成分氧化物(MCO)薄膜的電阻轉換性質。
    本研究是利用反應性射頻磁控濺鍍機製備非晶(HfCuAlTi)Ox 薄膜介於上、下白金電極間並無經過基材加熱及退火處理,藉由鍍製不同的氧含量的薄膜來研究其為主記憶體元件的電阻轉換特性及機制,我們驗證了絕緣層為非晶(HfCuAlTi)Ox 薄膜的RRAM元件呈現無電致成形(forming-free)的單極性電阻轉換性質,並具有低操作電壓(<1.7 V) 、好的重複讀寫能力(~ 300次)、高電阻比、室溫及85度下資料保存時間長(>10000 s)等優勢。其電阻轉換機制歸因於氧空缺存在於非晶薄膜中形成導通燈絲傳導所造成。因此, Pt/(HfCuAlTi)Ox/Pt的優異性能,對於下一代非揮發性電阻式記憶體的應用是一大發展。


    The metal–oxide resistive random access memory (RRAM) is a promising candidate for the next generation nonvolatile memory. The research and development of RRAM are of great interest to many researchers due to its low cost, low energy operation, fast operating speed, good retention, and simple device structure. In general, RRAM is fabricated with a metal-insulator-metal (MIM) structure, and good compatibility with the complementary metal-oxide-semiconductor (CMOS) technology. Because of the shrinkage in device dimension, the leakage current would occur at the grain-boundaries in a thin crystalline insulator layer during the operation, which would be detrimental to the performance of device. In order to minimize the leakage current, amorphous-based metal–oxide insulator layer was prepared in this study. We investigated the RS behavior in amorphous (HfCuAlTi)Ox multicomponent oxide (MCO) thin film. The MCO is selected for the RS property study mainly because of its amorphous nature.
    In the present study, an amorphous (HfCuAlTi)Ox thin film was deposited between top and bottom Pt electrodes by radio frequency magnetron sputtering system without intentional substrate heating or post-annealing. Different oxygen contents in (HfCuAlTi)Ox thin film were introduced and their resistive switching (RS) characteristics were examined. They exhibit typical forming-free unipolar RS properties with low operating voltage of <1.7 V, good endurance (~300 switching cycles), high ON/OFF resistance ratios, stable retention (>10000 s) at room temperature and 85°C. The RS properties are considered to be dominated by the filamentary conduction due to the presence of defects (oxygen vacancies) in the amorphous (HfCuAlTi)Ox thin film. In this work, the Pt/(HfCuAlTi)Ox/Pt device shows excellent performances for the next generation non-volatile memory applications.

    Contents 摘要…………..….. ............................................................................................................ I Abstract………………………………………………………………….…….……...….II Acknowledgements ......................................................................................................... .IV Contents……………………………………………………………..……………………V List of tables……………….. ......................................................................................... VII List of figures………………………………………………………………………….VIII Chapter 1 Introduction ........................................................................................................ 1 Chapter 2 Background ........................................................................................................ 3 2.1 Resistive random access memory (RRAM) ............................................................... 4 2.1.1 Unipolar resistive switching .................................................................................. 7 2.1.2 Bipolar resistive switching .................................................................................... 7 2.1.3 Nonpolar resistive switching ................................................................................. 7 2.2 Selection of oxide materials ..................................................................................... 10 2.3 Challenge for RRAM................................................................................................ 11 2.3.1 Forming-free ........................................................................................................ 12 2.3.2 Excellent endurance performance ....................................................................... 12 2.3.3 Issue of scaling down........................................................................................... 13 2.4 Mechanisms of resistive switching of RRAM .......................................................... 13 2.4.1 Conduction filament mechanism ......................................................................... 13 2.4.2 Electro-chemical metallization effect .................................................................. 16 2.4.3 Interface conducting path .................................................................................... 18 2.5 Mechanisms of current conduction in RRAM devices ............................................. 19 2.5.1 Ohmic contact ...................................................................................................... 19 2.5.2 Pool-Frenkel emission ......................................................................................... 20 2.5.3 Schottky emission ................................................................................................ 20 2.5.4 Space-charge-limited conduction ........................................................................ 23 2.6 Conductive atomic force microscopy study of CFs in RRAM devices .................... 24 Chapter3 Experimental procedures .................................................................................. 27 3.1 RRAM device preparation ........................................................................................ 27 3.1.1 Substrate preparation ........................................................................................... 27 3.1.2 MIM layers deposition......................................................................................... 28 3.2 Material Characterizations ........................................................................................ 31 3.2.1 Crystallography analysis...................................................................................... 31 3.2.2 Chemical state analysis ........................................................................................ 31 3.2.3 Microstructure and chemical composition characterizations .............................. 31 3.2.4 Surface roughness and current density analyses .................................................. 31 3.2.5 Electrical property measurements ....................................................................... 32 Chapter 4 Results and discussion ..................................................................................... 37 4.1 (HfCuAlTi)Ox oxide layer characterizations .......................................................... 37 4.1.1 Microstructure and chemical composition ........................................................ 37 4.1.2 Chemical bonding state analyses ....................................................................... 43 4.2 Effects of oxygen content on resistive switching properties for Pt/(HfCuAlTi)Ox/Pt devices…………………………………………………………………………….48 4.2.1 I-V results .......................................................................................................... 48 4.2.2 Endurance and retention characteristics ............................................................ 51 4.2.3 Conduction mechanism ..................................................................................... 56 4.2.4 C-AFM results ................................................................................................... 59 4.3 Proposed resistive switching mechanism for Pt/(HfCuAlTi)Ox/Pt devices ........... 65 Chapter 5 Conclusions ...................................................................................................... 67 References………………………………………………………………………………69

    [1] R. Waser, R. Dittmann, C. Staikov, K. Szot, Advanced Materials, 21 (2009) 2632-2663.
    [2] J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nature, 464 (2010) 873-876.
    [3] M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.-K. Yoo, K. Kim, Nat Mater, 10 (2011) 625-630.
    [4] E. Linn, R. Rosezin, S. Tappertzhofen, U. B&ouml;ttger, R. Waser, Nanotechnology, 23 (2012).
    [5] S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, T.W. Noh, Advanced Materials, 20 (2008) 1154-1159.
    [6] D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nature Nanotechnology, 5 (2010) 148-153.
    [7] H.H. Huang, W.C. Shih, C.H. Lai, Applied Physics Letters, 96 (2010).
    [8] L. Zhong, L. Jiang, R. Huang, C.H. De Groot, Applied Physics Letters, 104 (2014).
    [9] H. M&auml;hne, L. Berger, D. Martin, V. Klemm, S. Slesazeck, S. Jakschik, D. Rafaja, T. Mikolajick, Solid-State Electronics, 72 (2012) 73-77.
    [10] K. Tsunoda, Y. Fukuzumi, J.R. Jameson, Z. Wang, P.B. Griffin, Y. Nishi, Applied Physics Letters, 90 (2007).
    [11] S. Hong, D. Xiao Long, I. Hwang, J.S. Kim, Y. Chang Park, S.O. Kang, B. Ho Park, Applied Physics Letters, 99 (2011).
    [12] H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Applied Physics Letters, 96 (2010) 123502.
    [13] B. Sun, Y.X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han, J.F. Kang, Journal of Applied Physics, 105 (2009).
    [14] L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Applied Physics Letters, 97 (2010).
    [15] M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafr&iacute;a, X. Aymerich, Applied Physics Letters, 101 (2012).
    [16] K.L. Lin, T.H. Hou, J. Shieh, J.H. Lin, C.T. Chou, Y.J. Lee, Journal of Applied Physics, 109 (2011).
    [17] S. Lee, W.G. Kim, S.W. Rhee, K. Yong, Journal of the Electrochemical Society, 155 (2008) H92-H96.
    [18] A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H.B. Lu, G.Z. Yang, Advanced Materials, 23 (2011) 1277-1281.
    [19] Z.T. Xu, K.J. Jin, L. Gu, Y.L. Jin, C. Ge, C. Wang, H.Z. Guo, H.B. Lu, R.Q. Zhao, G.Z. Yang, Small, 8 (2012) 1279-1284.
    [20] K. Li, Y. Xia, B. Xu, X. Gao, H. Guo, Z. Liu, J. Yin, Applied Physics Letters, 96 (2010).
    [21] Z.Q. Wang, H.Y. Xu, X.H. Li, X.T. Zhang, Y.X. Liu, Y.C. Liu, IEEE Electron Device Letters, 32 (2011) 1442-1444.
    [22] W.Z. Chang, J.P. Chu, S.F. Wang, Applied Physics Letters, 101 (2012).
    [23] C.Y. Huang, J.H. Jieng, W.Y. Jang, C.H. Lin, T.Y. Tseng, ECS Solid State Letters, 2 (2013) P63-P65.
    [24] C.T. Tsai, T.C. Chang, S.C. Chen, I. Lo, S.W. Tsao, M.C. Hung, J.J. Chang, C.Y. Wu, C.Y. Huang, Applied Physics Letters, 96 (2010).
    [25] T.C. Chen, T.C. Chang, C.T. Tsai, T.Y. Hsieh, S.C. Chen, C.S. Lin, M.C. Hung, C.H. Tu, J.J. Chang, P.L. Chen, Applied Physics Letters, 97 (2010).
    [26] M.C. Chen, T.C. Chang, S.Y. Huang, K.C. Chang, H.W. Li, S.C. Chen, J. Lu, Y. Shi, Applied Physics Letters, 94 (2009).
    [27] Y.C. Chen, T.C. Chang, H.W. Li, S.C. Chen, J. Lu, W.F. Chung, Y.H. Tai, T.Y. Tseng, Applied Physics Letters, 96 (2010).
    [28] T.C. Chang, F.Y. Jian, S.C. Chen, Y.T. Tsai, Materials Today, 14 (2011) 608-615.
    [29] D. Lee, D.J. Seong, H.J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.O. Seo, S. Heo, M. Jo, D.K. Hwang, H.K. Park, M. Chang, M. Hasan, H. Hwang, Technical Digest - International Electron Devices Meeting, IEDM, 2006.
    [30] Y.S. Chen, H.Y. Lee, P.S. Chen, P.Y. Gu, C.W. Chen, W.P. Lin, W.H. Liu, Y.Y. Hsu, S.S. Sheu, P.C. Chiang, W.S. Chen, F.T. Chen, C.H. Lien, M.J. Tsai, Technical Digest - International Electron Devices Meeting, IEDM, 2009, pp. 5.5.1-5.5.4.
    [31] B. Lee, H.S.P. Wong, Digest of Technical Papers - Symposium on VLSI Technology, 2009, pp. 28-29.
    [32] W.C. Chien, Y.C. Chen, E.K. Lai, Y.D. Yao, P. Lin, S.F. Horng, J. Gong, T.H. Chou, H.M. Lin, M.N. Chang, Y.H. Shih, K.Y. Hsieh, R. Liu, C.Y. Lu, IEEE Electron Device Letters, 31 (2010) 126-128.
    [33] R. Waser, M. Aono, Nature Materials, 6 (2007) 833-840.
    [34] S.S. Sheu, P.C. Chiang, W.P. Lin, H.Y. Lee, P.S. Chen, Y.S. Chen, T.Y. Wu, F.T. Chen, K.L. Su, M.J. Kao, K.H. Cheng, M.J. Tsai, IEEE Symposium on VLSI Circuits, Digest of Technical Papers, 2009, pp. 82-83.
    [35] G.I. Meijer, Science, 319 (2008) 1625-1626.
    [36] B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F.Kang, B. Yu, Y.Y. Wang, Digest of Technical Papers - Symposium on VLSI Technology, 2009, pp. 30-31
    [37] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, B. Yu, Applied Physics Letters, 92 (2008).
    [38] H.B. Lv, M. Yin, Y.L. Song, X.F. Fu, L. Tang, P. Zhou, C.H. Zhao, T.A. Tang, B.A. Chen, Y.Y. Lin, IEEE Electron Device Letters, 29 (2008) 47-49.
    [39] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, D. Buchanan, Technical Digest - International Electron Devices Meeting, 1995, pp. 521-524.
    [40] J. Lu, T.C. Chang, Y.T. Chen, J.J. Huang, P.C. Yang, S.C. Chen, H.C. Huang, D.S. Gan, N.J. Ho, Y. Shi, A.K. Chu, Applied Physics Letters, 96 (2010).
    [41] A. Sawa, Materials Today, 11 (2008) 28-36.
    [42] C.C. Lin, B.C. Tu, C.C. Lin, C.H. Lin, T.Y. Tseng, IEEE Electron Device Letters, 27 (2006) 725-727.
    [43] R. Waser, Technical Digest - International Electron Devices Meeting, IEDM, 2008.
    [44] A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Applied Physics Letters, 83 (2003) 957-959.
    [45] S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Xue, C.W. Chu, L. Chen, A.J. Jacobson, Applied Physics Letters, 85 (2004) 317-319.
    [46] X. Chen, N.J. Wu, J. Strozier, A. Ignatiev, Applied Physics Letters, 87 (2005) 1-3.
    [47] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Applied Physics Letters, 86 (2005) 012107-012101-012107-012103.
    [48] A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Japanese Journal of Applied Physics, Part 2: Letters, 44 (2005) L1241-L1243.
    [49] A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Applied Physics Letters, 88 (2006).
    [50] W.Y. Chang, H.W. Huang, W.T. Wang, C.H. Hou, Y.L. Chueh, J.H. He, Journal of the Electrochemical Society, 159 (2012) G29-G32.
    [51] Y.M. Kim, J.S. Lee, Journal of Applied Physics, 104 (2008).
    [52] W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen, M.J. Tsai, Applied Physics Letters, 92 (2008).
    [53] C.Y. Lin, S.Y. Wang, D.Y. Lee, T.Y. Tseng, Journal of the Electrochemical Society, 155 (2008) H615-H619.
    [54] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, Khoriba, H. Kumigashira, M. Oshima, Technical Digest - International Electron Devices Meeting, IEDM, 2008.
    72
    [55] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, J. Chen, Applied Physics Letters, 92 (2008).
    [56] H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, F. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, M.J. Tsai, C. Lien, IEEE Electron Device Letters, 30 (2009) 703-705.
    [57] F.C. Chiu, Advances in Materials Science and Engineering, 2014 (2014).
    [58] K. Kamiya, M.Y. Yang, B. Magyari-Kope, M. Niwa, Y. Nishi, K. Shiraishi, IEEE Transactions on Electron Devices, 60 (2013) 3400-3406.
    [59] M.J. Lee, S. Han, S.H. Jeon, B.H. Park, B.S. Kang, S.E. Ahn, K.H. Kim, C.B. Lee, C.J. Kim, I.K. Yoo, D.H. Seo, X.S. Li, J.B. Park, J.H. Lee, Y. Park, Nano Letters, 9 (2009) 1476-1481.
    [60] B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Journal of Applied Physics, 98 (2005).
    [61] J.Y. Son, Y.H. Shin, Applied Physics Letters, 92 (2008).
    [62] D. Deleruyelle, C. Muller, J. Amouroux, R. M&uuml;ller, Applied Physics Letters, 96 (2010).
    [63] V. Iglesias, M. Lanza, A. Bayerl, M. Porti, M. Nafr&iacute;a, X. Aymerich, L.F. Liu, J.F. Kang, G. Bersuker, K. Zhang, Z.Y. Shen, Microelectronics Reliability, 52 (2012) 2110-2114.
    [64] Q. Zhou, Q. Lu, X. Zhang, Y. Song, Y.Y. Lin, X. Wu, Applied Surface Science, 271 (2013) 407-411.
    [65] M.F. Al-Kuhaili, Vacuum, 82 (2008) 623-629.
    [66] J. Morales, L. S&aacute;nchez, F. Mart&iacute;n, J.R. Ramos-Barrado, M. S&aacute;nchez, Thin Solid Films, 474 (2005) 133-140.
    [67] Z.H. Gan, G.Q. Yu, B.K. Tay, C.M. Tan, Z.W. Zhao, Y.Q. Fu, Journal of Physics D: Applied Physics, 37 (2004) 81-85.
    [68] T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, Applied Surface Science, 255 (2008) 2730-2734.
    [69] A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Vacuum, 83 (2009) 927-930.
    [70] V.V. Nikesh, A.B. Mandale, K.R. Patil, S. Mahamuni, Materials Research Bulletin, 40 (2005) 694-700.
    [71] N. Xu, B. Gao, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Digest of Technical Papers - Symposium on VLSI Technology, 2008, pp. 100-101.
    [72] J. Won Seo, S.J. Baik, S.J. Kang, Y.H. Hong, J.H. Yang, K.S. Lim, Applied Physics Letters, 98 (2011).
    [73] M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J.B. Park, I.G. Baek, I.K. Yoo, Technical Digest - International Electron Devices Meeting, IEDM, 2007,pp. 771-774.
    [74] Y.C. Shin, J. Song, K.M. Kim, B.J. Choi, S. Choi, H.J. Lee, G.H. Kim, T. Eom, C.S. Hwang, Applied Physics Letters, 92 (2008).
    [75] S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Applied Physics Letters, 85 (2004) 5655-5657.
    [76] J.W. Park, J.W. Park, D.Y. Kim, J.K. Lee, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 23 (2005) 1309-1313.
    [77] W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, IEEE Electron Device Letters, 29 (2008) 434-437.
    [78] H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, M.J. Tsai, Technical Digest - International Electron Devices Meeting, IEDM, 2008.
    [79] K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi, C.S. Hwang, Applied Physics Letters, 91 (2007).
    [80] K. Kyung Min, K. Gun Hwan, S. Seul Ji, S. Jun Yeong, L. Min Hwan, Y. Jeong Ho, H. Cheol Seong, Nanotechnology, 21 (2010) 305203.
    [81] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, H. Tanaka, Applied Physics Letters, 89 (2006).
    [82] B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger, Nanotechnology, 23 (2012) 495707.
    [83] U. Celano, Y. Yin Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, W. Vandervorst, Applied Physics Letters, 102 (2013) 121602.
    [84] L. Yang, C. Kuegeler, K. Szot, A. Ruediger, R. Waser, Applied Physics Letters, 95 (2009) 013109.
    [85] Q. Zhou, Q. Lu, X. Zhang, Y. Song, Y.Y. Lin, X. Wu, Applied Surface Science, 271 (2013) 407-411.

    無法下載圖示 全文公開日期 2020/07/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE