簡易檢索 / 詳目顯示

研究生: 黃于真
Yu-Chen Huang
論文名稱: 摻雜鐵之二氧化鈦奈米顆粒缺陷結構探討
Study of defect structure of Fe doped TiO2 Nano-particles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
郭永綱
Yung-Kang Kuo
董崇禮
Chong-Li Dong
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 二氧化鈦X光吸收光譜摻雜鐵氧空缺
外文關鍵詞: titanium oxide, XAS, doping Fe, oxygen vacancies
相關次數: 點閱:260下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為瞭解在二氧化鈦(TiO2)中摻雜鐵(Fe)對其缺陷結構之影響,本研究以溶膠-凝膠法(Sol-gel)製備摻雜不同比例Fe之 TiO2奈米粉末,利用X光繞射(X-ray diffraction)、X光吸收光譜(X-ray absorption spectroscopy)以及拉曼光譜(Raman spectroscopy)分析其晶格及電子組態,探討摻雜鐵的TiO2奈米顆粒中的缺陷結構變化。
    首先,由X光吸收光譜的Fe-L edge及Fe-K edge發現所摻雜的鐵離子在TiO2中以三價的形式存在。延伸精細結構(EXAFS)的分析則顯示,Fe離子與結構中的Ti離子形成置換。而O-K edge結果則指出鐵的摻雜造成Ti與O間的能帶結構產生變化。由Ti L及K-edge得知Ti的配位數隨著鐵摻雜量增加而下降顯示氧空缺的產生。拉曼光譜則發現鐵的摻雜會提高TiO2樣品中的氧空缺數量。
    摻雜不同比例Fe之 TiO2奈米粉末經由氧化退火處理後,發現Fe摻雜對存於TiO2結構內的氧空缺有明顯減少的趨勢,且摻雜量越高,減少的數量越多;經由還原退火處理後,發現Fe的摻雜在TiO2結構內產生第二相鈦鐵礦(ilmenite),且摻雜量越高,產生的數量越多。此第二相的生成改變Fe的價態及抑制樣品中氧空缺的數量。


    Fe-doped TiO2 NPs prepared by sol-gel method were investigated by using X-ray Absorption Spectroscopy (XAS) and Raman spectroscopy. The crystal structure and particle size was characterized by X-ray diffraction spectroscopy (XRD).
    X-ray absorption near edge structure (XANES) of Fe L and K edge show that the valence of Fe in the Fe-doped NPs is 3+ and is independent with the concentration of dopant. Extending X-ray Absorption Fine Structure (EXAFS) revealed that the Fe3+ replaces the Ti4+.The O K edge indicated that the hybridization between Ti 3d and O 2p changed as doping with Fe. Ti L and K edges demonstrated that Fe doping results in the disorder of TiO2. The change in coordinated environment was observed, which possible indicative the formation of oxygen vacancy. Raman peaks shift toward higher wavenumber as doping Fe, which indicative the formation of oxygen vacancy..
    Under the oxidizing atmosphere (O2), the oxygen vacancies of the annealing sample decrease along with the dopant Fe;under the reducing atmosphere (Ar+3%H2), the second phase ilmemite is found in Fe-doped sample. This second phase inhibit the formation of oxygen vacancies generated.

    中文摘要................................................ Ⅱ 英文摘要................................................ Ⅲ 目錄.................................................... Ⅳ 圖索引.................................................. Ⅴ 表索引.................................................. Ⅴ 第一章 緒論............................................. 1 1.1 前言……………………………………………………………… 1 1.2 研究背景………………………………………………………… 3 1.3 研究目的………………………………………………………… 5 第二章 材料特性與文獻回顧......................................................... 6 2.1 二氧化鈦基本性質……………………………………………… 6 2.1.1 物理性質與晶體結構………………………………………. 6 2.1.2 半導體性質…………………………………………………. 9 2.1.3 光觸媒性質…………………………………………………. 9 2.2 二氧化鈦缺陷結構…………………………………………….. 11 2.2.1 本質缺陷…………………………………………………... 11 2.2.2 外質缺陷…………………………………………………... 13 2.3 二氧化鈦表面性質……………………………………………. 14 2.4 二氧化鈦磁性研究的演進……………………………………. 17 2.4.1 薄膜系統摻雜過渡金屬元素.......................................... 17 2.4.2 薄膜系統未摻雜過渡金屬元素....................................... 19 2.4.3 奈米顆粒系統摻雜過渡金屬元素................................... 22 2.2.4 奈米顆粒系統未摻雜過渡金屬元素............................... 26 第三章 實驗方法與實驗儀器....................................................... 28 3.1 二氧化鈦奈米顆粒粉末製備…………………………………. 28 3.1.1 二氧化鈦奈米顆粒溶膠凝膠法製程……………………... 28 3.1.2 未摻雜之二氧化鈦奈米顆粒粉末………………………... 31 3.1.3 摻雜鐵之二氧化鈦奈米顆粒粉末………………………... 33 3.1.4 二氧化鈦奈米顆粒熱處理………………………………... 34 3.2分析儀器設備…………………………………………………... 35 3.2.1 X-ray 粉末繞射儀………………………………………. 35 3.2.2 場發射穿透式電子顯微鏡………………………………... 36 3.2.3 X-ray 吸收光譜…………………………………………. 37 3.2.4 拉曼光譜…………………………………………………... 41 第四章 結果與討論..................................................................... 42 4.1未退火處理之不同摻雜量Fe的TiO2奈米顆粒………………. 42 4.1.1 XRD與TEM分析……………………………………….. 42 4.1.2 XAS分析………………………………………………… 45 4.1.3 拉曼光譜分析……………………………………………. 59 4.2氧化退火對不同Fe摻雜量之TiO2奈米顆粒缺陷結構的影響. 61 4.2.1 XRD分析………………………………………………… 61 4.2.2 XAS分析………………………………………………… 62 4.2.3 拉曼光譜分析……………………………………………. 67 4.3還原退火對不同Fe摻雜量之TiO2奈米顆粒缺陷結構的影響. 68 4.3.1 XRD分析………………………………………………… 68 4.3.2 XAS分析………………………………………………… 69 4.3.3 拉曼光譜分析……………………………………………. 75 第五章 結論................................................................................ 76 參考文獻....................................................................................... 78

    [1] G. Guisbiers, Journal of Physical Chemistry C ,vol.115, pp.2616 (2011)
    [2] R. Janisch, P. Gopal, and N. A. Spaldin, Journal of Physics: Condensed Matter, Vol. 17, pp. R657 (2005)
    [3] W. K. Park, R. J. Ortega-Hertogs, J. Moodera, A. Punnoose, and M. S. Seehra, Journal of Applied Physics, Vol. 91, pp. 8093 (2002)
    [4] N. H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Physical Review B, Vol. 72, pp. 045336 (2005)
    [5] N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Physical Review B, Vol. 73, pp. 132404 (2004)
    [6] N. H. Hong, J. Sakai, A. Ruyter, and V. Brize, Applied Physics Letters, Vol. 89, pp. 252504 (2004)
    [7] Z.M. Tian, S.L. Yuan, S.Y. Yin, S.Q. Zhang, H.Y. Xie, J.H. Miao,Y.Q. Wang, J.H. He, and J.Q. Li, Journal of Magnetism and Magnetic Materials Vol. 320 pp. L5 (2008)
    [8] G. Glaspell ,and A. Manivannan, Journal of Cluster Science, Vol. 16, pp. 501 (2005)
    [9] H. M. Lee, C. S. Kim, Journal of Magnetism and Magnetic Materials Vol. 310 pp. 2099 (2007)
    [10] 賴易鋒,「添加第三元素對電弧離子鍍二氧化鈦光觸媒薄膜之影 響」,逢甲大學材料科學及工程學系碩士論文,(2004)
    [11] 劉建宏,「以常壓電漿火炬系統製作銅離子植入二氧化鈦可見光型光觸媒」,國立高雄第一科技大學環境與安全衛生工程所碩士論文,(2008)
    [12] 彭郁華,「二氧化鈦奈米管氫能源製備系統之設計」,國立台灣大學材料科學及工程學研究所碩士論文,(2008)
    [13] 高濂、鄭珊、張青紅著,奈米光觸媒,五南圖書出版公司,第97頁(2011)
    [14] Xiliang Nie, Shuping Zhuo,GloriaMaeng,and Karl Sohlberg, International Journal of Photoenergy Volume 2009, 294042 (2009)
    [15] Ulrike Diebold ,Surface Science Reports ,vol.48 ,pp53 (2003)
    [16] Amy L. Linsebiglar, Guangquan Lu and Jr. John T. Yates, Chemical Review, vol.95, pp.735 (1995)
    [17] 廖怡婷,「摻雜金屬離子之二氧化鈦奈米顆粒及二氧化鈦/二氧化錫奈米複合材料的合成與鑑定」,國立清華大學化學系碩士論文,(2009)
    [18] M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny , Journal of Physical Chemistry C ,vol.112 ,pp.5275(2008)
    [19] P.J.D. Lindan ,N.H. Harrison, J.M. Holender ,M.J. Gillan ,Chemical Physics Letters ,vol.261 ,pp.246(1996)
    [20] Hengzhong Zhang and Jillian F. Banfield , Journal of Materials Chemistry, vol.8(9), pp.2073(1998)
    [21] Xue-Qing Gong and Annabella Selloni , Journal of Physical Chemistry B ,vol.109, pp.19561 (2005)
    [22] Asmae Bouzoubaa, Alexis Markovits, Mo`nica Calatayud , Christian Minot ,Surface Science ,vol.583 ,pp.107(2005)
    [23] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Y. Koshihara, and H. Koinuma, Science, Vol. 291, pp. 854 (2001)
    [24] K. Ueda, H. Tabata, and T. Kawai, Applied Physics Letters, Vol 79, No. 7, pp. 988 (2001)
    [25] C. B. Fitzgerald, M. Venkatesan, A. P. Douvalis, S. Huber, J. M. D. Coey, and T. Bakas, Journal of Applied Physics, Vol. 95, No.11 pp. pp. 7390 (2002)
    [26] S. N. Kale, S. B. Ogale, and S. R. Shinde, Applied Physics Letters, Vol 82, No. 13, pp. 2100 (2003)
    [27] N. H. Hong, W. Prellier, J. Sakai, A. Hassini, Applied Physics Letters, Vol. 84, No. 15, pp. 2850 (2004).
    [28] K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and Kannan M. Krishnan , Physical Review Letters, Vol. 97 pp. 157204 (2005)
    [29] Y. Takeuchi, G. Yoshizaki, and T. Takeuchi, Nature, Vol. 430, pp. 630 (2004)
    [30] N. H. Hong, J. Sakai, A. Ruyter, and V. Brize, Applied Physics Letters, Vol. 89, pp. 252504 (2006)
    [31] N. H. Hong, Joe Sakai, and Ngo Thu Huong, Physical Review B, Vol. 72, pp. 045336 (2005)
    [32] N. H. Hong, Joe Sakai, Physical Review B, Vol. 73, pp. 132404 (2006)
    [33] J. D. Bryan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, Journal of American Chemical. Society, Vol. 126, pp. 11640 (2004)
    [34] G. Glaspell and A. Manivannan, Journal of Cluster Science, Vol. 16, pp. 501 (2005)
    [35] S. Maensiri, P. Laokul, J. Klinkaewnarong, Journal of Magnetism and Magnetic Materials, Vol. 302, pp. 448 (2006)
    [36] H. M. Lee, C. S. Kim, Journal of Magnetism and Magnetic Materials Vol. 310 pp. 2099 (2007)
    [37] A. Manivannan, G. Glaspell, and M. S. Seehra, Journal of Applied Physics, Vol. 94, pp. 6994 (2003)
    [38] N. Rajkumar and K. Ramachandran , IEEE Transactions on Nanotechnology Vol. 10, NO. 3, MAY (2011)
    [39] Marin Cernea ,Mihail Secu ,Corina Elisabeta Secu ,Mihaela Baibarac ,Bogdan S. Vasile ,Journal of Nanoparticle Research ,vol.13 ,pp.77(2011)
    [40] 陳則良,「X光吸收光譜對BaTiO3@SrTiO3超晶格之研究」,私立淡江大學物理研究所,碩士論文,(2001)
    [41] 楊宗燁、林鴻明 、吳泉毅和林中魁,「奈米材料之 X 光吸收光譜檢測與分析理」物理雙月刊,第二十三卷,第六期,第640-646頁 (2001)
    [42] Z. Ambrus, N. Bala’zs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, K. Mogyoro’si, Applied Catalysis B: Environmental, Vol. 81, pp. 27 (2008)
    [43] T. Tong, J. Zhang , B. Tian , F. Chen, and D. He, Journal of Hazardous Materials, Vol. 155, pp. 572 (2008)
    [44] Kannan M. Krishnan ,Ultramicroscopy ,vol.32 ,pp.309 (1990)
    [45] P. A. van Aken ,B. Liebscher , Physics and Chemistry of Minerals , vol.29 ,pp.188 (2002)
    [46] Tami E. Westre, Pierre Kennepohl, Jane G. DeWitt, Britt Hedman Keith O. Hodgson ,and Edward I. Solomon, Journal of Americam Chemical Society ,vol.119 ,pp. 6297-6314 (1997),
    [47] L. X. Chen, T. Liu, M. C. Thurnauer, R. Csencsits, and T. Rajh, Journal of Physical Chemistry B, Vol. 106, pp. 8539 (2002)
    [48] J P Crocombette and F Jollet , Journal of Physics: Condensed Matter ,vol.6 ,pp.10811 (1994)
    [49] G, L. Miessler.;D, A. Tarr. Inorganic Chemistry, 3rd ed.; Person Prentice Hall: New Jersey,2004
    [50] C. C. Calvert, W. M. Rainforth, D. C. Sinclair, and A. R. West, Micron, Vol. 37, pp. 412 (2006)
    [51] Artur Braun, Kranthi K. Akurati,Giuseppino Fortunato, Felix A. Reifler, Axel Ritter, Ashley S. Harvey, Andri Vital, and Thomas Graule , Journal of Physical Chemistry C, vol.114, pp.516(2010)
    [52] King Lun Yeung,A. Javier Maira, Jennifer Stolz,Eppie Hung, Nick Ka-Chun Ho,An Chyi Wei, Javier Soria, Kuei-Jung Chao, and Po Lock Yue , Journal of Physical Chemistry B,vol.106, pp.4608 (2002)
    [53] Paula C. Angelome’, Leandro Andrini, Mauricio E. Calvo, Fe’lix Gregorio Requejo, Sara A. Bilmes, and Galo J. A. A. Soler-Illia , Journal of Physical Chemistry C, vol.111 pp.10886(2007)
    [54] V. Luca, S. Djajanti, and R. F. Howe, Journal of Physical Chemistry B, Vol. 102, pp. 10650 (1998)
    [55] F. Farges, G. E. Brown, and J. J. Rehr, Physical Review B, Vol. 56 No 16, pp. 1809 (2004)
    [56] F.M.F. de Groat , Journal of Electron Spectroscopy and Related Phenomena, vol.61 ,pp.529 (1994)
    [57] Inna Karatchevtseva,w David J. Cassidy, Zhaoming Zhang, Gerry Triani, Kim S. Finnie, Sandra L. Cram, and Christophe J. Barbe, Journal of Americam Chemical Society, vol.91 pp.2015–2023 (2008)
    [58] S.Zhu, T. Shi, W.liu, S. Wei, Y. Xie, C. Fan, and Y.Li, Physica B, Vol. 396, pp. 177 (2007)
    [59] Qingping Wu, Qiang Zheng, and Roel van de Krol , Journal of Physical Chemistry C, vol.116, pp.7219−7226 (2012)
    [60] P. A. van Aken ,B. Liebscher V. J. Styrsa , Physics and Chemistry of Minerals , vol.25 pp.323 (1998)

    無法下載圖示 全文公開日期 2018/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE