簡易檢索 / 詳目顯示

研究生: 陳品璇
Pin-Hsuan Chen
論文名稱: 二氧化矽-聚甲基丙烯酸甲酯塗層的製備與性質分析於輻射冷卻之應用
Preparation and characterization of SiO2-PMMA coating for radiative cooling applications
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王承浩
Chen-Hao Wang
鄒年棣
Nien-Ti Tsou
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 被動輻射冷卻大氣窗口二氧化矽二氧化鈦塗層
外文關鍵詞: Passive radiative cooling, Atmospheric window, SiO2, TiO2, Coating
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輻射冷卻是一種被動冷卻方式,在不需要輸入能量的情況下,藉由大氣窗口區域(波長8至13微米)向外太空散發熱輻射。二氧化矽(SiO2)在大氣窗口具備良好的熱發射性質,因此,本實驗結合SiO2與聚甲基丙烯酸甲酯(PMMA)顆粒製備被動輻射冷卻塗層(SiO2-PMMA coating),並由穩定塗層製程、調配固含量及優化塗層性質三個階段,建構出理想的塗層。以掃描式電子顯微鏡、白光干涉儀、迴轉式動態流變儀、傅立葉轉換紅外線光譜儀、紫外光/可見光/近紅外光譜儀及日曬溫度量測來鑑定其表面形貌、表面粗糙度、分散性、紅外光發射光譜、漫反射光譜以及塗層的冷卻效果。
    首先,比較刷塗、刮刀塗佈、噴槍塗佈以及噴塗後刮平等製程方式製備塗層,刮刀塗佈法能夠獲得相對穩定的塗層性質,另外,為了維持粉體在懸浮液中的分散性,先調整分散劑的添加量,接著製備不同SiO2顆粒體積比(25~45%)的塗層,優化固含量的組成,並探討厚度變化以及添加5 vol% 的金紅石相二氧化鈦(rutile TiO2)顆粒對塗層冷卻性質的影響。
    實驗結果顯示在35 vol% SiO2的塗層為最佳的固含量組成,相較未塗佈的基板,厚度75微米的SiO2-PMMA和TiO2-SiO2-PMMA塗層在相同測量條件下最高降溫達到9.4和9.8 °C。


    Radiative cooling is a passive cooling technology that releases heat radiation towards outer space through the atmospheric window (8~13 μm wavelength). In the atmospheric window, SiO2 exhibits a strong emissivity. As a result, the radiative cooling coatings used in this work were composed of SiO2 and polymethyl methacrylate (PMMA) particles. The experiment was divided into three steps to improve the coating and accomplish the cooling properties: coating preparation, solid content adjustment, and coating optimization. Surface morphology, surface roughness, particle distribution, emissive spectrum, solar reflectance spectrum, and cooling performance of the coatings were studied using a scanning electron microscope (SEM), white light interferometry (WLI) modular compact rheometer (MCR), Fourier transform infrared spectrometer (FT-IR), UV-Vis-NIR spectrometer, and temperature data logger.
    First, comparing the various fabrication processes, including brush coating, blade coating, spray coating, and scrape after spray coating, revealed that the blade coating approach produced coating with relatively stable coat characteristics. In addition, the dispersant concentration in the suspension preparation was adjusted to maintain the powder's dispersibility. Then, to optimize the composition of the solid content, coats with various volume ratios of SiO2 particles have been prepared. Finally, the effect of coating thickness and the addition of 5 vol% of rutile TiO2 particles were discussed.
    Based on the temperature test, the SiO2-PMMA coating with 35 vol% SiO2 particles had the best cooling properties. The 75 μm SiO2-PMMA and TiO2-SiO2-PMMA coatings successfully decreased the temperature by 9.4 and 9.8 °C, respectively, compared to the uncoated substrate.

    目錄 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 輻射冷卻原理 3 2.1.1 輻射冷卻基礎 3 2.1.2 熱輻射的機制 6 2.1.2.1 物體熱輻射特性 6 2.1.2.2 黑體輻射 7 2.1.2.3 發射率 9 2.1.2.4 太陽輻射 10 2.1.3 大氣窗口 11 2.1.4 選擇性輻射發射體(Selective emitter) 13 2.2 被動輻射冷卻研究及發展 14 2.2.1 被動夜間輻射冷卻 14 2.2.2 被動日間輻射冷卻 16 2.2.2.1 層狀薄膜(Multilayer structure) 19 2.2.2.2 粉體塗層(Randomly distributed particle structure) 22 2.2.3 薄膜材料與結構的選擇 25 2.3 二氧化矽-聚甲基丙烯酸甲酯塗層(SiO2-PMMA coating) 28 第三章 實驗流程與製備 30 3.1 實驗設計 30 3.2 實驗藥品 33 3.3 實驗儀器設備 34 3.4 樣品製備流程 35 3.4.1. 塗層製備 35 3.4.2. 塗層固含量調配 35 3.4.3. 塗層性質優化 36 3.5 樣品性質及分析方法 37 3.5.1 聚焦型離子束顯微鏡 38 3.5.2 白光干涉儀 39 3.5.3 迴轉式動態流變儀 40 3.5.4 傅立葉轉換紅外線光譜儀 41 3.5.5 紫外光/可見光/近紅外光譜儀 42 3.5.6 日曬溫度量測 43 第四章 實驗結果 44 4.1 塗層製程 44 4.1.1 塗層表面形貌觀察 45 4.1.2 厚度均勻性與表面粗糙度 48 4.2 塗層固含量 51 4.2.1 分散劑比例對懸浮液黏度之影響(MCR) 51 4.2.2 不同粉體比例SiO2-PMMA塗層之粉體分布(SEM-BSE) 54 4.2.3 不同粉體比例SiO2-PMMA塗層材料之發射能力(FTIR) 58 4.2.4 不同粉體比例SiO2-PMMA塗層之冷卻性能 60 4.3 塗層冷卻性能 62 4.3.1 SiO2-PMMA和TiO2-SiO2-PMMA塗層之粉體分布(SEM-BSE) 62 4.3.2 SiO2-PMMA和TiO2-SiO2-PMMA塗層之反射率(UV-Vis-NIR) 64 4.3.3 不同厚度SiO2-PMMA和TiO2-SiO2-PMMA塗層之冷卻效能 66 第五章 結果討論 69 5.1 日曬溫度量測之可靠性 69 5.2 不同粉體比例SiO2-PMMA塗層對冷卻性能之影響 70 5.3 SiO2-PMMA塗層厚度與冷卻性能之關係 74 5.4 添加TiO2顆粒對SiO2-PMMA塗層冷卻性能之影響 75 第六章 結論 76 第七章 未來工作 77 參考文獻 78

    [1] D.L. Zhao, A. Aili, Y. Zhai, S.Y. Xu, G. Tan, X.B. Yin, R.G. Yang, Radiative sky cooling: Fundamental principles, materials, and applications, Applied Physics Reviews, 6 (2019) 021306.
    [2] D. Han, B.F. Ng, M.P. Wan, Preliminary study of passive radiative cooling under Singapore's tropical climate, Solar Energy Materials and Solar Cells, 206 (2020) 110270.
    [3] G. Ranganath, Black-body radiation, Resonance, 13 (2008) 115-133.
    [4] M.P. Martín, P. Ceccato, S. Flasse, I. Downey, Fire detection and fire growth monitoring using satellite data, Remote sensing of large wildfires,Springer(1999) 101-122.
    [5] G. Kirchhoff, Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht, Von Kirchhoff bis Planck,Springer(1978) 131-151.
    [6] X. Yang, B. Wei, Exact research on the theory of the blackbody thermal radiation, Scientific reports, 6 (2016) 1-5.
    [7] T. Eriksson, C. Granqvist, Radiative cooling computed for model atmospheres, Applied Optics, 21 (1982) 4381-4388.
    [8] A. Standard, G173-03-Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface, Ann. Book of ASTM Standards 2003, 14 (2012) 1-20.
    [9] J. Peoples, X. Li, Y. Lv, J. Qiu, Z. Huang, X. Ruan, A strategy of hierarchical particle sizes in nanoparticle composite for enhancing solar reflection, International Journal of Heat and Mass Transfer, 131 (2019) 487-494.
    [10] A.R. Gentle, G.B. Smith, Radiative heat pumping from the earth using surface phonon resonant nanoparticles, Nano letters, 10 (2010) 373-379.
    [11] Turco, Earth under siege: from air pollution to global change. http://www.helpsavetheclimate.com/climate.html.
    [12] U. Eicker, A. Dalibard, Photovoltaic–thermal collectors for night radiative cooling of buildings, Solar Energy, 85 (2011) 1322-1335.
    [13] M. Hanif, T. Mahlia, A. Zare, T. Saksahdan, H. Metselaar, Potential energy savings by radiative cooling system for a building in tropical climate, Renewable and sustainable energy reviews, 32 (2014) 642-650.
    [14] M. Meir, J. Rekstad, O. LØvvik, A study of a polymer-based radiative cooling system, Solar energy, 73 (2002) 403-417.
    [15] S. Vall, A. Castell, Radiative cooling as low-grade energy source: A literature review, Renewable and Sustainable Energy Reviews, 77 (2017) 803-820.
    [16] B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, G. Troise, Nocturnal and diurnal performances of selective radiators, Applied Energy, 3 (1977) 267-286.
    [17] A. Srinivasan, B. Czapla, J. Mayo, A. Narayanaswamy, Infrared dielectric function of polydimethylsiloxane and selective emission behavior, Applied Physics Letters, 109 (2016) 061905.
    [18] M. Hu, G. Pei, L. Li, R. Zheng, J. Li, J. Ji, Theoretical and experimental study of spectral selectivity surface for both solar heating and radiative cooling, International Journal of Photoenergy, (2015).
    [19] A. Hamza, H. Ali, M. TAHA, M. ISMAIL, Cooling of water flowing through a night-sky radlator, Solar energy, 55 (1995) 235-253.
    [20] D. Michell, K. Biggs, Radiation cooling of buildings at night, Applied Energy, 5 (1979) 263-275.
    [21] C. Granqvist, A. Hjortsberg, Surfaces for radiative cooling: Silicon monoxide films on aluminum, Applied Physics Letters, 36 (1980) 139-141.
    [22] C. Granqvist, A. Hjortsberg, T. Eriksson, Radiative cooling to low temperatures with selectivity IR-emitting surfaces, Thin Solid Films, 90 (1982) 187-190.
    [23] T. Eriksson, E. Lushiku, C. Granqvist, Materials for radiative cooling to low temperature, Solar energy materials, 11 (1984) 149-161.
    [24] D.S. Parker, J.R. Sherwin, Evaluation of the NightCool Nocturnal Radiation Cooling Concept: Annual Performance Assessment in Scale Test Buildings Stage Gate 1B, (2008)
    [25] A. Dyreson, F. Miller, Night sky cooling for concentrating solar power plants, Applied Energy, 180 (2016) 276-286.
    [26] M. Zeyghami, F. Khalili, Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling, Energy Conversion and Management, 106 (2015) 10-20.
    [27] Y. Man, H. Yang, J.D. Spitler, Z. Fang, Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings, Applied Energy, 88 (2011) 4160-4171.
    [28] X. She, L. Cong, B. Nie, G. Leng, H. Peng, Y. Chen, X. Zhang, T. Wen, H. Yang, Y. Luo, Energy-efficient and-economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review, Applied Energy, 232 (2018) 157-186.
    [29] C. Granqvist, Radiative heating and cooling with spectrally selective surfaces, Applied Optics, 20 (1981) 2606-2615.
    [30] C. Granqvist, A. Hjortsberg, Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films, Journal of Applied Physics, 52 (1981) 4205-4220.
    [31] A. Hjortsberg, C. Granqvist, Infrared optical properties of silicon monoxide films, Applied optics, 19 (1980) 1694-1696.
    [32] B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Radiative cooling: A review of fundamentals, materials, applications, and prospects, Applied Energy, 236 (2019) 489-513.
    [33] T. Eriksson, S.-J. Jiang, C. Granqvist, Surface coatings for radiative cooling applications: Silicon dioxide and silicon nitride made by reactive rf-sputtering, Solar Energy Materials, 12 (1985) 319-325.
    [34] T. Eriksson, C.G. Granqvist, Infrared optical properties of electron-beam evaporated silicon oxynitride films, Applied optics, 22 (1983) 3204-3206.
    [35] A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515 (2014) 540-544.
    [36] M.A. Kecebas, M.P. Menguc, A. Kosar, K. Sendur, Passive radiative cooling design with broadband optical thin-film filters, Journal of Quantitative Spectroscopy and Radiative Transfer, 198 (2017) 179-186.
    [37] S.Y. Jeong, C.Y. Tso, J. Ha, Y.M. Wong, C.Y. Chao, B. Huang, H. Qiu, Field investigation of a photonic multi-layered TiO2
    passive radiative cooler in sub-tropical climate, Renewable Energy, 146 (2020) 44-55.
    [38] Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling, Science, 355 (2017) 1062-1066.
    [39] H. Bao, C. Yan, B. Wang, X. Fang, C. Zhao, X. Ruan, Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling, Solar Energy Materials and Solar Cells, 168 (2017) 78-84.
    [40] C. Ziming, W. Fuqiang, G. Dayang, L. Huaxu, S. Yong, Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window”, Solar Energy Materials and Solar Cells, 213 (2020) 110563.
    [41] J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, A.J. Minnich, Daytime radiative cooling using near-black infrared emitters, Acs Photonics, 4 (2017) 626-630.
    [42] E.D. Palik, Handbook of optical constants of solids, Academic press, (1998).
    [43] D.-Z.A. Chen, G. Chen, Measurement of silicon dioxide surface phonon-polariton propagation length by attenuated total reflection, Applied Physics Letters, 91 (2007) 121906.
    [44] Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle, Nature communications, 7 (2016) 1-5.
    [45] X. Zhang, Metamaterials for perpetual cooling at large scales, Science, 355 (2017) 1023-1024.
    [46] Z. Huang, X. Ruan, Nanoparticle embedded double-layer coating for daytime radiative cooling, International Journal of Heat and Mass Transfer, 104 (2017) 890-896.
    [47] X. Ao, M. Hu, B. Zhao, N. Chen, G. Pei, C. Zou, Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling, Solar Energy Materials and Solar Cells, 191 (2019) 290-296.
    [48] S. Atiganyanun, J.B. Plumley, S.J. Han, K. Hsu, J. Cytrynbaum, T.L. Peng, S.M. Han, S.E. Han, Effective radiative cooling by paint-format microsphere-based photonic random media, ACS Photonics, 5 (2018) 1181-1187.
    [49] A.R. Gentle, G.B. Smith, A subambient open roof surface under the Mid‐Summer sun, Advanced Science, 2 (2015) 1500119.
    [50] B. Orel, M.K. Gunde, A. Krainer, Radiative cooling efficiency of white pigmented paints, Solar energy, 50 (1993) 477-482.
    [51] C. Wojtysiak, J. Butler, Radiative cooling surface coatings, Patent WO, 2002098996 (2002).
    [52] A. Synnefa, M. Santamouris, I. Livada, A study of the thermal performance of reflective coatings for the urban environment, Solar Energy, 80 (2006) 968-981.
    [53] M. Muselli, Passive cooling for air-conditioning energy savings with new radiative low-cost coatings, Energy and Buildings, 42 (2010) 945-954.
    [54] T.M.J. Nilsson, G.A. Niklasson, Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils, Solar Energy Materials and Solar Cells, 37 (1995) 93-118.
    [55] P. Berdahl, S.E. Bretz, Preliminary survey of the solar reflectance of cool roofing materials, Energy and Buildings, 25 (1997) 149-158.
    [56] J. Pockett, Heat reflecting paints and a review of their advertising material, Chemeca 2010: Engineering at the Edge; 26-29 September 2010, Hilton Adelaide, South Australia, (2010) 2999.
    [57] K. Hashimoto, H. Irie, A. Fujishima, TiO2
    photocatalysis: a historical overview and future prospects, Japanese journal of applied physics, 44 (2005) 8269.
    [58] P. Berdahl, H. Akbari, R. Levinson, W.A. Miller, Weathering of roofing materials–an overview, Construction and building materials, 22 (2008) 423-433.
    [59] A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, R. Stevens, Characteristics of silica‐coated TiO2
    and its UV absorption for sunscreen cosmetic applications, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 38 (2006) 473-477.
    [60] M. Montazer, E. Pakdel, Reducing photoyellowing of wool using nano TiO2
    Photochemistry and photobiology, 86 (2010) 255-260.
    [61] Q. Gao, X. Wu, Y. Ma, D. Li, Y. Fan, C. Du, Effect of Sn4+ doping on the photoactivity inhibition and near infrared reflectance property of mica-titania pigments for a solar reflective coating, Ceramics International, 42 (2016) 17148-17153.
    [62] X. He, F. Wang, H. Liu, J. Li, L. Niu, Fabrication of highly dispersed NiTiO3@TiO2
    yellow pigments with enhanced NIR reflectance, Materials Letters, 208 (2017) 82-85.
    [63] H.J. Kim, H.J. Lee, D.-S. Kim, Hollow TiO2
    flake prepared from TiO2
    coated glass flake for solar heat protection and their thermal performance, Materials & Design, 150 (2018) 188-192.
    [64] R. Sharma, S. Tiwari, S.K. Tiwari, Highly Reflective Nanostructured Titania Shell: A Sustainable Pigment for Cool Coatings, ACS Sustainable Chemistry & Engineering, 6 (2018) 2004-2010.
    [65] R.F. Brady, L.V. Wake, Principles and formulations for organic coatings with tailored infrared properties, Progress in Organic Coatings, 20 (1992) 1-25.
    [66] J. Song, J. Qin, J. Qu, Z. Song, W. Zhang, X. Xue, Y. Shi, T. Zhang, W. Ji, R. Zhang, H. Zhang, Z. Zhang, X. Wu, The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings, Solar Energy Materials and Solar Cells, 130 (2014) 42-50.
    [67] A.K. Bendiganavale, V.C. Malshe, Infrared reflective inorganic pigments, Recent Patents on Chemical Engineering, 1 (2008) 67-79.
    [68] Z. Cheng, Y. Shuai, D. Gong, F. Wang, H. Liang, G. Li, Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2
    particles and SiO2 particles, Science China Technological Sciences, 64 (2021) 1017-1029.
    [69] 施劭儒, 游進陽, 輻射冷卻厚膜材料開發, 國立台灣科技大學 (2019)
    [70] H. Abdi, Coefficient of variation, Encyclopedia of research design, 1 (2010) 169-171.
    [71] S.C. Feifel, F. Lisdat, Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers, Journal of nanobiotechnology, 9 (2011) 1-12.
    [72] K. Pielichowski, I. Hamerton, Compatible poly (vinyl chloride)/chlorinated polyurethane blends: thermal characteristics, European polymer journal, 36 (2000) 171-181.
    [73] A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, R. Stevens, Characteristics of silica‐coated TiO2 and its UV absorption for sunscreen cosmetic applications, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 38 (2006) 473-477.
    [74] J. Godnjavec, B. Znoj, P. Venturini, A. Žnidaršič, The application of rutile nano-crystalline titanium dioxide as UV absorber, Informacije MIDEM, 40 (2010) 6-9.
    [75] D. Chae, S. Son, H. Lim, P.-H. Jung, J. Ha, H. Lee, Scalable and paint-format microparticle–polymer composite enabling high-performance daytime radiative cooling, Materials Today Physics, 18 (2021) 100389.
    [76] M. Chen, D. Pang, X. Chen, H. Yan, Investigating the effective radiative cooling performance of random dielectric microsphere coatings, International Journal of Heat and Mass Transfer, 173 (2021) 121263.
    [77] X. Zhang, J. Qiu, J. Zhao, X. Li, L. Liu, Complex refractive indices measurements of polymers in infrared bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 252 (2020) 107063.

    無法下載圖示 全文公開日期 2026/07/15 (校內網路)
    全文公開日期 2026/07/15 (校外網路)
    全文公開日期 2026/07/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE