簡易檢索 / 詳目顯示

研究生: 王浩宇
Hao-Yu Wang
論文名稱: 聚丁二酸丁二醇酯/聚偏二氟乙烯添加有機改質蒙脫土奈米複合材料植入於大鼠體內消化道之研究
Study of polybutylene succinate/polyvinylidene fluoride/modified organic montmorillonite nanocomposite implanted in the digestive tract of mice
指導教授: 郭中豐
Chung-Feng Kuo
蔡協致
Hsieh-Chih Tsai
口試委員: 黃昌群
Chang-Chiun Huang
張浩銘
Hao-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 133
中文關鍵詞: 奈米複合材料胃腸道體內降解拉伸試驗
外文關鍵詞: Nanocomposite, Gastrointestinal tract, In vivo degradation, Tensile test
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,二型糖尿病患者會產生胰島素阻抗導致血糖過高以及體重過重的問題,可透過腸套管裝置來控制腸道賀爾蒙分泌進而控制胰島素的分泌,達到控制血糖的效果。然而,應用於腸套管的薄膜必須承受腸胃蠕動所施予的應力而不受破壞,並且具有降解性而不會由於植入後移除過程造成腸壁組織產生傷害,因此本研究將惰性材料(Poly(vinylidene fluoride), PVDF)與降解材(Poly(butylene succinate), PBS)進行混摻,同時添加改質後的蒙脫土製備成具有降解性以及高機械強度的奈米複合材料,並將奈米複合材料製備成膜。當奈米複合材料的比例為PVDF90/PBS10/OMMT3wt%擁有最高的拉伸強度為62.61 MPa,達到植入生物的軟組織中所需的拉伸強度為46.5 MPa,挑選此比例的奈米複合材料與PBS薄膜植入大鼠的胃腸道(胃和十二指腸)中進行體內降解試驗。研究並比較奈米複合材料與PBS薄膜的降解情況。薄膜植入後一個月,分別取出並通過量測薄膜的重量損失、拉伸試驗和表面形態變化來確定降解程度。結果顯示,PBS薄膜在十二指腸區與胃區的降解程度皆高於奈米複合材料。在胃腸道中,來自胃酸與腸液的侵蝕提高PBS薄膜的降解程度,而奈米複合材表現出更佳的抗腐蝕性。奈米複合材在胃中的重量損失率為1.88%並且在十二指腸中的重量損失率僅為0.88%,結果顯示奈米複合材料在的降解速率比PBS薄膜慢。奈米複合材進行一個月的體內降解試驗其拉伸強度為60.85 MPa,依然維持高的拉伸強度。通過組織學檢查體內組織(胃和十二指腸)顯示輕度炎症和正常術後會出現的副作用。通過體內降解試驗判斷本研究的奈米複合材具有應用於腸套管之可行性。


    Recently, type 2 diabetic patients with insulin resistance problem have caused hyperglycemia and overweight. This duodenal barrier treatment avoids the directly contact of food with duodenal wall and then the plasma glucose will be controlled through manipulate intestinal hormonal and insulin secretion. However, the film of duodenal barrier must withstand the stress exerted by enterogastric peristalsis and the gastrointestinal motility without being damaged and has degradability without causing damage to the intestinal wall due to the removal process after implantation. Therefore, in this study, poly(vinylidene fluoride) (PVDF) was first blended with biodegradable poly(butylene succinate) (PBS), and then added montmorillonite at the same time to prepared the polymer nanocomposite with degradability and high mechanical properties. The nanocomposite had the highest tensile strength of 62.61 MPa in the proportion of PVDF90/PBS10/OMMT3 wt%, which had reached the standard of tensile strength, 46.5 MPa, applying to soft tissue. This study explored the degradation of nanocomposite and PBS films through measuring the weight loss, tensile test and observing the change of microscopic surface after implanted in vivo for one month. The result indicated that the extent of degradation of PBS films are faster than nanocomposite in duodenum and stomach. In gastro intestinal tract, the attack of gastric acid and juice increased the extent of degradation of PBS films; however, nanocomposite showed better corrosion resistance. The rate of weight loss of nanocomposite in stomach was 1.88% and that of in duodenum was 0.88 %, which was less than the rate of weight loss of PBS films. The nanocomposite remained high tensile strength of 60.85 MPa after implanted one-month in vivo degradation test. Histological examination of the in vivo tissue revealed mild inflammation and negligible adverse effects. Through in vivo degradation test, the nanocomposites of this study have the feasibility of applying as biodegradable duodenal barrier.

    摘要 I Abstract III 致謝 V 圖目錄 V 表目錄 XV 第一章 前言 1 1.1 研究背景及動機 1 1.2 研究目的 4 第二章 文獻回顧 6 2.1生物可降解材料 6 2.1.1生物可分解材料優點 7 2.1.2 生物可分解材料之檢測、標準與認證38 7 2.1.3生物可分解材料之優勢 8 2.2 聚丁二酸丁二醇酯(Polybutylene succinate) 10 2.2.1 聚丁二酸丁二醇酯之結構與特性 10 2.2.2 聚丁二酸丁二醇酯降解原理 11 2.2.3影響生物降解之因素 11 2.3 聚偏二氟乙烯 13 2.3.1聚偏二氟乙烯性質與結構 13 2.3.2 薄膜製作 14 2.4 奈米黏土材料 16 2.4.1黏土的特性與結構 16 2.4.2蒙脫土(Montmorillonite)簡介 18 2.4.3蒙脫土的改質 20 2.5 高分子奈米複合材料 22 2.5.1 複合材料之製備方法 22 2.5.2 複合材料分散型態 24 2.5.3複合材料之優勢 26 2.5.4 複合材料之生物醫學應用 28 2.6 高分子混摻 30 2.6.1 高分子混摻相容性狀態 30 第三章 實驗規劃與流程 32 3.1 實驗材料 32 3.1.1基材 32 3.1.2 改質劑 33 3.1.3 溶劑 33 3.2 實驗儀器 34 3.2.1 薄膜製備之儀器 34 3.2.2 改質黏土之儀器 36 3.2.3 材料測試及分析之儀器 36 3.3 實驗流程圖 43 3.4實驗方法 45 3.4.1聚丁二酸丁二醇酯/聚偏二氟乙烯混摻物之製備 45 3.4.2奈米複合材料之製備 46 3.4.3蒙脫土(MMT)層間距之鑑定 48 3.4.4聚偏二氟乙烯/聚丁二酸丁二醇酯與改質蒙脫土混合 50 3.4.5動物實驗 51 第四章 結果與討論 53 4.1聚偏二氟乙烯/聚丁二酸丁二醇酯混摻材料 53 4.1.1 PVDF/PBS混摻材料機械性能分析-拉伸試驗 53 4.1.2 PVDF/PBS混摻材料熱性質分析-TGA 55 4.1.3 PVDF/PBS混摻材料微結構檢測探討相容性-SEM 58 4.1.4 PVDF/PBS混摻材料分子結構分析探討相容性-FTIR分析 60 4.1.5 PVDF/PBS混摻材料分子結構分析探討分散性-Raman 61 4.2 蒙脫土有機改質 63 4.2.1黏土與有機黏土SAXS分析 63 4.2.2黏土與有機黏土之能量散射光譜(EDS)分析 65 4.2.3黏土與有機黏土之FTIR分析 67 4.2.4黏土與有機黏土之Raman分析 69 4.2.5有機黏土剝層前後表面分析-AFM 70 4.3 PVDF/PBS/有機蒙脫土奈米複合材料 72 4.3.1 複合材料表面微結構以及奈米黏土分散性探討-SEM 72 4.3.2 複合材料機械性能分析-拉伸試驗 75 4.3.3 複合材料含有不同比例的奈米黏土下表面粗糙情況探討 81 4.3.4複合材料分子結構分析以及黏土分散強度探討-Raman 83 4.3.5 複合材料中奈米黏土在高分子基材中剝層分散形態探討 85 4.3.6複合材料熱性質分析-TGA 87 4.4 動物實驗 89 4.4.1置入大鼠體內後複合材料微結構探討-SEM 91 4.4.2置入大鼠體內後複合材料機械性能探討-拉伸試驗 94 4.4.3置入大鼠體內後複合材料分子結構探討-FTIR 99 4.4.4 置入大鼠體內後複合材料重量損失率 101 第五章 結論 104 第六章 參考文獻 106

    [1] Ogurtsova, K.; da Rocha Fernandes, J. D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N. H.; Cavan, D.; Shaw, J. E.; Makaroff, L. E., IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice 2017, 128 (3), 40-50.
    [2] Tangvarasittichai, S., Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015, 6 (3), 456-480.
    [3] Kumar, N., Endoscopic therapy for weight loss: gastroplasty, duodenal sleeves, intragastric balloons, and aspiration. World J Gastrointest Endosc 2015, 7 (9), 847-859.
    [4] Kim, S. H.; Chun, H. J.; Choi, H. S.; Kim, E. S.; Keum, B.; Jeen, Y. T., Current status of intragastric balloon for obesity treatment. World J Gastroenterol 2016, 22 (24), 5495-5504.
    [5] Neto, M. G.; Campos, J. M. Endoscopic duodenal–jejunal bypass: endobarrier. Springer 2016, 227-236.
    [6] Noria, S. F.; Mansfield, S. A.; Mikami, D. J., Index endoscopic malabsorptive procedures in obesity treatment: techniques and outcomes. In The SAGES Manual of Bariatric Surgery, Reavis, K. M.; Barrett, A. M.; Kroh, M. D., Eds. Springer International Publishing: Cham 2018, 239-257.
    [7] Maggi, U.; Formiga, A.; Lauro, R., Hepatic abscess as a complication of duodenal-jejunal bypass sleeve system and review of the literature. Surgery for Obesity and Related Diseases 2016, 12 (5), 47-50.
    [8] Frydenberg Am, H. B.; Suturin, V. M.; Truong, H.; Ryan, A.; Soutorine, M., New anchoring mechanism and design of an endoluminal duodeno-jejunal bypass liner for treatment of obesity: a pilot animal trial. Obesity Surgery 2019, 31 (2), 189-202.
    [9] Maitz, M. F., Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology 2015, 1 (3), 161-176.
    [10] Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K. W., Biomedical applications of polymer-composite materials: a review. Composites Science and Technology 2001, 61 (9), 1189-1224.
    [11] Teo, A. J. T.; Mishra, A.; Park, I.; Kim, Y. J.; Park, W. T.; Yoon, Y. J., Polymeric biomaterials for medical implants and devices. ACS Biomaterials Science & Engineering 2016, 2 (4), 454-472.
    [12] Faruk, O.; Bledzki, A. K.; Fink, H. P.; Sain, M., Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 2012, 37 (11), 1552-1596.
    [13] Reddy, M. M.; Vivekanandhan, S.; Misra, M.; Bhatia, S. K.; Mohanty, A. K., Biobased plastics and bionanocomposites: current status and future opportunities. Progress in Polymer Science 2013, 38 (10), 1653-1689.
    [14] Bhat, S.; Kumar, A., Biomaterials in regenerative medicine. J Post Med Edu Res 2012, 46(3), 81-89.
    [15] Nair, L. S.; Laurencin, C. T., Biodegradable polymers as biomaterials. Progress in Polymer Science 2007, 32 (8), 762-798.
    [16] Morreale, M.; Liga, A.; Mistretta, C. M.; Ascione, L.; Mantia, P. F., Mechanical, Thermomechanical and reprocessing behavior of green composites from biodegradable polymer and wood flour. Materials 2015, 8 (11) , 91-102.
    [17] Woodruff, M. A.; Hutmacher, D. W., The return of a forgotten polymer—polycaprolactone in the 21st century. Progress in Polymer Science 2010, 35 (10), 1217-1256.
    [18] Kong, Y.; Ma, Y.; Lei, L.; Wang, X.; Wang, H., Crystallization of poly(ε-caprolactone) in poly(vinylidene fluoride)/poly(ε-caprolactone) Blend. Polymers 2017, 9 (2).
    [19] Zeng, J. B.; Li, K. A.; Du, A. K., Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances 2015, 5 (41), 32546-32565.
    [20] Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A., Poly(butylene succinate)-based polyesters for biomedical applications: a review. European Polymer Journal 2016, 75(20), 431-460.
    [21] Chen, R. Y.; Zou, W.; Zhang, H. C.; Zhang, G. Z.; Yang, Z. T.; Jin, G.; Qu, J. P., Thermal behavior, dynamic mechanical properties and rheological properties of poly(butylene succinate) composites filled with nanometer calcium carbonate. Polymer Testing 2015, 42(15), 160-167.
    [22] Zhang, Y.; Yu, C.; Hu, P.; Tong, W.; Lv, F.; Chu, P. K.; Wang, H., Mechanical and thermal properties of palygorskite poly(butylene succinate) nanocomposite. Applied Clay Science 2016, 119(5), 96-102.
    [23] Ceraulo, M.; Morreale, M.; Botta, L.; Mistretta, M. C.; Scaffaro, R., Prediction of the morphology of polymer-clay nanocomposites. Polymer Testing 2015, 41(8), 149-156.
    [24] Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D., Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. Journal of Hazardous Materials 2016, 301(7), 371-380.
    [25] Hu, C. H.; Xia, M. S.; Xu, Z. R.; Xiong, L., Effects of copper-bearing montmorillonite on growth performance and digestive function of growing pigs. Asian-Australas J Anim Sci 2004, 17 (11), 1575-1581.
    [26] Chang, H. M.; Prasannan, A.; Tsai, H. C.; Jhu, J. J., Ex vivo evaluation of biodegradable poly(ɛ-caprolactone) films in digestive fluids. Applied Surface Science 2014, 313(3), 828-833.
    [27] Chang, H. M.; Huang, C. C.; Tsai, H. C.; Imae, T.; Hong, P. D., Characterization and morphology analysis of degradable poly(l-lactide) film in in-vitro gastric juice incubation. Applied Surface Science 2012, 262(21), 89-94.
    [28] Sajkiewicz, P.; Heljak, M. K.; Gradys, A.; Choińska, E.; Rumiński, S.; Jaroszewicz, T.; Bissenik, I.; Święszkowski, W., Degradation and related changes in supermolecular structure of poly(caprolactone) in vivo conditions. Polymer Degradation and Stability 2018, 157(8), 70-79.
    [29] Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P., The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27 (9), 1735-1740.
    [30] Chang, H. M.; Huang, C. C.; Parasuraman, V. R.; Jhu, J. J.; Tsai, C. Y.; Chao, H. Y.; Lee, Y. L.; Tsai, H. C., In vivo degradation of poly (ε-caprolactone) films in gastro intestinal (GI) tract. Materials Today Communications 2017, 11(5), 18-25.
    [31] An, Z.; Li, Y.; Xu, R.; Dai, F.; Zhao, Y.; Chen, L., New insights in poly(vinylidene fluoride) (PVDF) membrane hemocompatibility: synergistic effect of PVDF-g-(acryloyl morpholine) and PVDF-g-(poly(acrylic acid)-argatroban) copolymers. Applied Surface Science 2018, 457(35), 170-178.
    [32] Kang, G. D.; Cao, Y. M., Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review. Journal of Membrane Science 2014, 463(25), 145-165.
    [33] Liu, F.; Hashim, N. A.; Liu, Y.; Abed, M. R. M.; Li, K., Progress in the production and modification of PVDF membranes. Journal of Membrane Science 2011, 375 (1), 1-27.
    [34] Choudalakis, G.; Gotsis, A. D., Permeability of polymer/clay nanocomposites: a review. European Polymer Journal 2009, 45 (4), 967-984.
    [35] Kennouche, S.; Le Moigne, N.; Kaci, M.; Quantin, J. C.; Caro-Bretelle, A. S.; Delaite, C.; Lopez-Cuesta, J. M., Morphological characterization and thermal properties of compatibilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly(butylene succinate)(PBS)/halloysite ternary nanocomposites. European Polymer Journal 2016, 75(1), 142-162.
    [36] Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B., Green bioplastics as part of a circular bioeconomy. Trends in Plant Science 2019, 24 (3), 237-249.
    [37] Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A., Poly(butylene succinate)-based polyesters for biomedical applications: a review. European Polymer Journal 2016, 75(1), 431-460.
    [38] Environmentally biodegradable polymer association. 2001.
    [39] Phua, Y. J.; Lau, N. S.; Sudesh, K.; Chow, W. S.; Mohd Ishak, Z. A., Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polymer Degradation and Stability 2012, 97 (8), 1345-1354.
    [40] Han, H.; Wang, X.; Wu, D., Mechanical properties, morphology and crystallization kinetic studies of bio-based thermoplastic composites of poly(butylene succinate) with recycled carbon fiber. Journal of Chemical Technology & Biotechnology 2013, 88 (7), 1200-1211.
    [41] Barkoula, N. M.; Alcock, B.; Cabrera, N. O.; Peijs, T., Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polymers and Polymer Composites 2008, 16 (2), 101-113.
    [42] Yang, J.; Tian, W.; Li, Q.; Li, Y.; Cao, A. J. B., Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate) bearing functionalizable carbonate building blocks: II. enzymatic biodegradation and in vitro biocompatibility assay. Biomacromolecules 2004, 5 (6), 2258-2268.
    [43] Ok Han, S.; Muk Lee, S.; Ho Park, W.; Cho, D., Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. Journal of Applied Polymer Science 2006, 100 (6), 4972-4980.
    [44] Bikiaris, D. N.; Papageorgiou, G. Z.; Achilias, D. S., Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polymer Degradation and Stability 2006, 91 (1), 31-43.
    [45] Cook, W. J.; Cameron, J. A.; Bell, J. P.; Huang, S. J., Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. Journal of Polymer Science: Polymer Letters Edition 1981, 19 (4), 159-165.
    [46] Bikiaris, D. N.; Papageorgiou, G. Z.; Giliopoulos, D. J.; Stergiou, C. A., Correlation between chemical and solid-state structures and enzymatic hydrolysis in novel biodegradable polyesters. The case of poly(propylene alkanedicarboxylate)s. Macromolecular Bioscience 2008, 8 (8), 728-740.
    [47] Cho, K.; Lee, J.; Kwon, K., Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. Journal of Applied Polymer Science 2001, 79 (6), 1025-1033.
    [48] Sailema-Palate, G. P.; Vidaurre, A.; Campillo-Fernández, A. J.; Castilla-Cortázar, I., A comparative study on poly(ε-caprolactone) film degradation at extreme ph values. Polymer Degradation and Stability 2016, 130(5), 118-125.
    [49] Ueberschlag, P., PVDF piezoelectric polymer. Sensor Review 2001, 21 (2), 118-126.
    [50] P, V.; Khakhar, D. V.; Misra, A., Studies on α to β phase transformations in mechanically deformed PVDF films. Journal of Applied Polymer Science 2010, 117 (6), 3491-3497.
    [51] Bottino, A.; Camera-Roda, G.; Capannelli, G.; Munari, S., The formation of microporous polyvinylidene difluoride membranes by phase separation. Journal of Membrane Science 1991, 57 (1), 1-20.
    [52] Liang, C. Z.; Chung, T. S.; Lai, J. Y., A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science 2019, 97(1), 101-141.
    [53] Pinnau, I.; Koros, W. J., Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. Journal of Applied Polymer Science 1991, 43 (8), 1491-1502.
    [54] Uddin, F., Clays, Nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A 2008, 39 (12), 2804-2814.
    [55] Briscoe, B. J.; Fiori, L.; Pelillo, E., Nano-indentation of polymeric surfaces. Journal of Physics D: Applied Physics 1998, 31 (19), 2395-2405.
    [56] Fuller, A. J.; Shaw, S.; Peacock, C. L.; Trivedi, D.; Burke, I. T., Study of sr sorption to illite, goethite, chlorite, and mixed sediment under hyperalkaline conditions. Langmuir 2016, 32 (12), 2937-2946.
    [57] Mousa, M.; Evans, N. D.; Oreffo, R. O. C.; Dawson, J. I., Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 2018, 159(10), 204-214.
    [58] Kiliaris, P.; Papaspyrides, C. D., Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Progress in Polymer Science 2010, 35 (7), 902-958.
    [59] Mondal, D.; Mollick, M. M. R.; Bhowmick, B.; Maity, D.; Bain, M. K.; Rana, D.; Mukhopadhyay, A.; Dana, K.; Chattopadhyay, D., Effect of poly(vinyl pyrrolidone) on the morphology and physical properties of poly(vinyl alcohol)/sodium montmorillonite nanocomposite films. Progress in Natural Science: Materials International 2013, 23 (6), 579-587.
    [60] Briscoe, B. J.; Lorge, O.; Wajs, A.; Dang, P., Carbon dioxide–poly(vinylidene fluoride) interactions at high pressure. Journal of Polymer Science Part B: Polymer Physics 1998, 36 (13), 2435-2447.
    [61] Mignon, P.; Ugliengo, P.; Sodupe, M.; Hernandez, E. R., Ab initio molecular dynamics study of the hydration of Li(+), Na(+) and K(+) in a montmorillonite model. Influence of isomorphic substitution. Phys Chem Chem Phys 2010, 12 (3), 688-97.
    [62] Tao, L.; Xiao-Feng, T.; Yu, Z.; Tao, G., Swelling of K+, Na+and Ca2+-montmorillonites and hydration of interlayer cations: a molecular dynamics simulation. Chinese Physics B 2010, 19 (10), 109101.
    [63] Yano, K.; Usuki, A.; Okada, A., Synthesis and properties of polyimide-clay hybrid films. Journal of Polymer Science Part A: Polymer Chemistry 1997, 35 (11), 2289-2294.
    [64] Aprile, F.; Lorandi, R., Evaluation of cation exchange capacity (CEC) in tropical soils using four different analytical methods. Journal of Agricultural Science 2012, 4 (6) , 279-284.
    [65] Lagaly, G., Characterization of clays by organic compounds. Clay Minerals 1981, 16 (1), 1-21.
    [66] Akbari, A.; Talebanfard, S.; Hassan, A., The effect of the structure of clay and clay modifier on polystyrene-clay nanocomposite morphology: a review. Polymer-Plastics Technology and Engineering 2010, 49 (14), 1433-1444.
    [67] Moraes, R. P.; Valera, T. S.; Pereira, A. M. C.; Demarquette, N. R.; Santos, A. M., Influence of the type of quaternary ammonium salt used in the organic treatment of montmorillonite on the properties of poly(styrene-co-butyl acrylate)/layered silicate nanocomposites prepared by in situ miniemulsion polymerization. Journal of Applied Polymer Science 2011, 119 (6), 3658-3669.
    [68] Samakande, A.; Hartmann, P. C.; Cloete, V.; Sanderson, R. D., Use of acrylic based surfmers for the preparation of exfoliated polystyrene–clay nanocomposites. Polymer 2007, 48 (6), 1490-1499.
    [69] Melenka, G. W.; Cheung, B. K. O.; Schofield, J. S.; Dawson, M. R.; Carey, J. P., Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Composite Structures 2016, 153(10), 866-875.
    [70] Tsai, S., Introduction to composite materials. New Tork: Routledge, 2018.
    [71] Alcântara, A.; Darder, M.; Aranda, P.; Ruiz-Hitzky, E., Polysaccharide–fibrous clay bionanocomposites. Applied Clay Science 2014, 96(3), 2-8.
    [72] Nguyen, Q. T.; Baird, D. G., Preparation of polymer–clay nanocomposites and their properties. Advances in Polymer Technology 2006, 25 (4), 270-285.
    [73] Theng, B. K. G., Formation and properties of clay-polymer complexes. Amsterdam: Elsevier, 2012, 4.
    [74] Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O., Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ∊-caprolactam. Journal of Materials Research 1993, 8 (5), 1174-1178.
    [75] Pinnavaia, T. J.; Beall, G. W., Polymer-clay nanocomposites. New Jersey: John Wiley 2000.
    [76] Lan, T.; Pinnavaia, T. J., Clay-reinforced epoxy nanocomposites. Chemistry of Materials 1994, 6 (12), 2216-2219.
    [77] Wen, J.; Wilkes, G. L., Organic/inorganic hybrid network materials by the sol−gel approach. Chemistry of Materials 1996, 8 (8), 1667-1681.
    [78] Jeon, I. Y.; Baek, J. B., Nanocomposites derived from polymers and inorganic nanoparticles. Materials 2010, 3 (6), 520-531.
    [79] Okada, A.; Kawasumi, M.; Usuki, A.; Kojima, Y.; Kurauchi, T.; Kamigaito, O., Nylon 6–clay hybrid. MRS Proceedings 1989, 171, 45.
    [80] Lee, D. C.; Jang, L. W., Preparation and characterization of PMMA–clay hybrid composite by emulsion polymerization. Journal of Applied Polymer Science 1996, 61 (7), 1117-1122.
    [81] Agag, T.; Koga, T.; Takeichi, T., Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer 2001, 42 (8), 3399-3408.
    [82] Tyan, H. L.; Liu, Y. C.; Wei, K. H., Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chemistry of Materials 1999, 11 (7), 1942-1947.
    [83] Gilman, J. W., Nanocomposites: a revolutionary new flame retardant approach. SAMPE J. 1997, 33 (1), 40.
    [84] Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Biomaterials science: an introduction to materials in medicine. Boston: Elsevier, 2004.
    [85] Coleman, M., Specific interactions and the miscibility of polymer blends. New York: Routledge, 2017.
    [86] Sun, Z.; Park, Y.; Zheng, S.; Ayoko, G. A.; Frost, R. L., Thermal stability and hot-stage raman spectroscopic study of Ca-montmorillonite modified with different surfactants: a comparative study. Thermochimica Acta 2013, 569(5), 151-160.
    [87] Jaleh, B.; Jabbari, A., Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Applied Surface Science 2014, 320, 339-347.
    [88] Mao, H.; Zhang, T.; Zhang, N.; Huang, T.; Yang, J.; Wang, Y., Largely restricted nucleation effect of carbon nanotubes in a miscible poly(vinylidene fluoride)/poly(butylene succinate) blend. Polymer International 2016, 65 (12), 1417-1429.
    [89] Cai, X.; Lei, T.; Sun, D.; Lin, L. J. R. A., A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using ftir. RSC Advances 2017, 7 (25), 15382-15389.
    [90] Moraes, R. S.; Saez, V.; Hernandez, J. A. R.; de Souza Júnior, F. G., Hyperthermia system based on extrinsically magnetic poly (butylene succinate). Macromolecular Symposia 2018, 381 (1), 1800108.
    [91] Boccaccio, T.; Bottino, A.; Capannelli, G.; Piaggio, P., Characterization of PVDF membranes by vibrational spectroscopy. Journal of Membrane Science 2002, 210 (2), 315-329.
    [92] Al-Mosawy, M. G. A. A.; Al-Mulla, E. A. J., Preparation of new nano-organoclays from hexadecylamine, tetradecylamine and chalcone with montmorillonite using ion exchange processes. Epitoanyag - Journal of Silicate Based and Composite Materials 2018, 70 (4), 116-119.
    [93] Nikolaidis, K. A.; Koulaouzidou, A. E.; Gogos, C.; Achilias, S. D., Synthesis and characterization of dental nanocomposite resins filled with different clay nanoparticles. Polymers 2019, 11 (4).
    [94] Sarier, N.; Onder, E.; Ersoy, S., The modification of Na-montmorillonite by salts of fatty acids: an easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 371 (1), 40-49.
    [95] Nakamoto, K. J. H. O. V. S., Handbook of Vibrational Spectroscopy. New Jersey: Wiley, 2006.
    [96] Praus, P.; Turicová, M.; Študentová, S.; Ritz, M., Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. Journal of Colloid and Interface Science 2006, 304 (1), 29-36.
    [97] Arnoult, G.; Belmonte, T.; Kosior, F.; Dossot, M.; Henrion, G., On the origin of self-organization of SiO2 nanodots deposited by CVD enhanced by atmospheric pressure remote microplasma. Journal of Physics D: Applied Physics 2011, 44 (17), 174022.
    [98] Li, H.; Yu, Y.; Yang, Y., Synthesis of exfoliated polystyrene/montmorillonite nanocomposite by emulsion polymerization using a zwitterion as the clay modifier. European Polymer Journal 2005, 41 (9), 2016-2022.
    [99] Xiong, J.; Zheng, Z.; Jiang, H.; Ye, S.; Wang, X., Reinforcement of polyurethane composites with an organically modified montmorillonite. Composites Part A: Applied Science and Manufacturing 2007, 38 (1), 132-137.
    [100] Yang, J.; Wang, J.; Zhang, Q.; Chen, F.; Deng, H.; Wang, K.; Fu, Q., Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. Polymer 2011, 52 (21), 4970-4978.
    [101] Song, Y.; Zhao, Z.; Yu, W.; Li, B.; Chen, X., Morphological structures of poly(vinylidene fluoride)/montmorillonite nanocomposites. Science in China Series B: Chemistry 2007, 50 (6), 790-796.
    [102] Pramoda, K. P.; Mohamed, A.; Yee Phang, I.; Liu, T., Crystal transformation and thermomechanical properties of poly(vinylidene fluoride)/clay nanocomposites. Polymer International 2005, 54 (1), 226-232.
    [103] Tserki, V.; Matzinos, P.; Pavlidou, E.; Vachliotis, D.; Panayiotou, C., Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polymer Degradation and Stability 2006, 91 (2), 367-376.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 2029/08/20 (校外網路)
    全文公開日期 2034/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE