簡易檢索 / 詳目顯示

研究生: 賴文祥
Wen-Shiang Lai
論文名稱: 不同硼含量對鈦鋯硼氮薄膜的微結構及機械性質之影響
Influences of various boron contents on the microstructure and mechanical properties of Ti-Zr-B-N thin films
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 郭俞麟
Yu-lin Kuo
李志偉
Jyh-wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 257
中文關鍵詞: 奈米複合結構鈦鋯硼氮薄膜硼含量奈米壓痕儀磨耗試驗刮痕試驗及電化學腐蝕試驗
外文關鍵詞: nanocomposite structure, Ti-Zr-B-N thin films, the boron content, nanoindentation, wear test, scratch test and electrochemical corrosion test
相關次數: 點閱:203下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 據不少文獻指出,硼的添加可有效形成奈米複合結構,現今已不少研究朝奈米複合結構方向發展。本研究中,利用雙靶共濺鍍方式方式鍍製具有不同硼含量之鈦鋯硼氮薄膜,分別為控制鈦及二硼化鋯靶材鍍製富含鈦之鈦鋯硼氮薄膜,及控制鋯及二硼化鈦靶材鍍製富含鋯之鋯鈦硼氮薄膜。第一階段調整試片與靶材(鈦及二硼化鋯)之距離,命名為B及E系列;第二階段調整試片與靶材(鋯及二硼化鈦)之距離,命名為G系列,以上兩種階段為的是鍍製具有成分梯度之鈦鋯硼氮薄膜。第三階段則控制靶材功率,鍍製具有均勻成分之鈦鋯硼氮薄膜,命名為HT及HZ系列,分析各階段薄膜之相結構、微結構、表面色度及表面粗糙度,再檢測其硬度、韌性、附著性、磨潤性質及抗蝕性能,以探討不同硼含量對鈦鋯硼氮薄膜的微結構及機械性質之影響。經實驗結果發現,硼含量降低至0.8-5.4 at.%,將具有細小之非晶氮化硼相包圍奈米柱狀晶;此外,過渡金屬原子的添加,會成為置換型固溶體,產生固溶強化,硬度可達26-35 GPa,同時具備金色且平滑之表面、良好之韌性及附著性、低磨擦係數、優異抗磨耗及防蝕能力。當硼含量大於20 at.%時,會形成大量軟質之氮化硼相覆蓋奈米晶粒,抑制晶粒成長,束縛晶粒尺寸至約3-5 nm;但會大幅軟化薄膜。綜觀而言,硼具有細化晶粒之效應,且於鈦鋯硼氮薄膜中,會促進形成奈米晶/非晶相之奈米複合結構,有效提升機械性質及改善防蝕能力。


    According to a lot of literatures, the boron is an effective element to produce a nanocomposite structure. Recently, a substantial amount of studies has been toward the direction of nanocomposite structure.In this study, a co-sputtering method of dual-targets was adopted to fabricate a serious of Ti-Zr-B-N coatings containing various B concentrationts. Control the Ti and ZrB2 targets to sputter Ti-Zr-B-N films of rich-Ti, and control the Zr and TiB2 targets to sputter Zr-Ti-B-N films of rich-Zr, respectively. The first stage was that these substrates were placed due to the difference of position between the Ti and ZrB2 targets to deposit Ti-Zr–B–N thin films,and were denoted as B and E series. The second stage was that these substrates were placed due to the difference of position between the Zr and TiB2 targets to deposit Zr–Ti-B–N thin films,and were denoted as G series. Above two stages were in order to sputter with compositional gradients of Ti-Zr-B-N thin films. The third stage was that adjust targets power to deposit Zr–Ti-B–N thin films with uniform compositions,and were denoted as HT and HZ series. For films of each stage, analyze the phases, microstructure, surface color and the surface roughness, and examine the hardness, toughness, adhesion, tribological properties and corrosion resistance. The effects of Zr and B contents were investigated in relation to the microstructure, adhesion, tribological and mechanical properties of thin films. The results showed that the boron content reduced to 0.8-5.4 at.%, the two phases nanocomposite structure consisting of fine columnar grains surrounded by very thin amorphous BN phase is clearly seen. Furthermore, the addition of the transition metal atoms were transformed into substitutional solid solution, generate solid solution strengthening effect. The hardness rise 26-35 GPa, along with golden color and smooth surface, good toughness and adhesion, low coefficient of friction, excellent wear and corrosion resistance capabilities. When the boron content was greater than 20 at.%, it formed the larger volume fraction of soft amorphous BN phase cover nano grains.The amorphous BN phase restrained grains growth,make the grain size constraint about 3-5 nm.But it strongly soften the films. All in all,the boron could refine grain and promote the formation of nanocrystalline/ amorphous nanocomposite structure in the Ti-Zr-B-N thin films, then effectively enhance the mechanical properties and improve corrosion ability.

    指導教授推薦書 i 學位考試委員會審定書 ii 摘要 iii ABSTRACT iv 誌謝 vi 目錄 vii 圖目錄 xiii 表目錄 xxi 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 1 第二章 文獻回顧 3 2.1 薄膜製程技術 3 2.1.1 濺鍍原理 3 2.1.2 磁控濺鍍系統 3 2.2 奈米複合薄膜 4 2.2.1 奈米複合薄膜之分類 5 2.2.2 奈米金屬氮化物與硬質相之奈米複合薄膜 5 2.3 氮化鈦薄膜 7 2.3.1 氮氣之影響 7 2.3.2 結構與性質 8 2.3.3 高濺鍍率 9 2.4 氮化鋯薄膜 9 2.4.1 氮氣之影響 9 2.4.2 結構與性質 10 2.4.3 磨潤行為及性質 11 2.5 三元以上之多元奈米複合薄膜 11 2.5.1 Ti-B-N薄膜 11 2.5.2 Zr-B-N薄膜 15 2.5.3 其他多元薄膜 16 2.6 氮化硼相對薄膜之影響 17 2.6.1 硼氮結合所形成之相 17 2.6.2 非晶質氮化硼相(a-BN)於各薄膜中之機制 17 2.6.3 「智慧型」高溫硬化過渡金屬硼氮化物薄膜 22 第三章 實驗方法 23 3.1 實驗流程 23 3.1.1 第一階段之實驗 23 3.1.2 第二階段之實驗 23 3.1.3 第三階段之實驗 24 3.2 實驗方法與步驟 28 3.2.1 基材試片規格與前處理 28 3.2.2 實驗設備和濺鍍製程參數 28 3.2.3 實驗進行之步驟如下所示: 30 3.3 鍍膜性質分析 32 3.3.1 成份分析 32 3.3.2 表面與截面形貌分析 33 3.3.3 晶體結構分析 35 3.3.4 鍵結結構分析 36 3.3.5 硬度試驗 38 3.3.6 壓痕韌性試驗 39 3.3.7 附著性試驗 40 3.3.7.1 刮痕試驗 40 3.3.7.2 HRC-DB試驗 43 3.3.8 磨耗試驗 44 3.3.9 表面色度檢測 45 3.3.10 電化學腐蝕檢測 47 第四章 結果與討論 48 4.1 不同硼含量對於B系列TI-ZR-B-N薄膜性質之影響 48 4.1.1 成分分析 48 4.1.2 晶相分析 50 4.1.3 鍵結分析 53 4.1.4 表面形貌分析 55 4.1.5 微結構分析 58 4.1.6 表面色度分析 67 4.1.7 硬度檢測 68 4.1.8 附著性評估 70 4.1.8.1 刮痕試驗法 70 4.1.8.2 HRC-DB試驗法 72 4.1.9 磨潤性質檢測 75 4.2 不同硼含量對於E系列TI-ZR-B-N薄膜性質之影響 80 4.2.1 成分分析 80 4.2.2 晶相分析 82 4.2.3 鍵結分析 86 4.2.4 表面形貌分析 88 4.2.5 微結構分析 91 4.2.6 表面色度分析 100 4.2.7 硬度檢測 101 4.2.8 附著性評估 103 4.2.8.1 刮痕試驗法 103 4.2.8.2 HRC-DB試驗法 105 4.2.9 磨潤性質檢測 108 4.3 不同硼含量對於G系列ZR-TI- B-N薄膜性質之影響 113 4.3.1 成分分析 113 4.3.2 晶相分析 115 4.3.3 鍵結分析 118 4.3.4 表面形貌分析 120 4.3.5 微結構分析 123 4.3.6 表面色度分析 126 4.3.7 硬度檢測 127 4.3.8 附著性評估 129 4.3.8.1 刮痕試驗法 129 4.3.8.2 HRC-DB試驗法 131 4.3.9 磨潤性質檢測 134 4.4 不同硼含量對於HT系列TI-ZR- B-N薄膜性質之影響 139 4.4.1 成分分析 139 4.4.2 晶相分析 141 4.4.3 鍵結分析 144 4.4.4 表面形貌分析 145 4.4.5 微結構分析 148 4.4.6 表面色度分析 150 4.4.7 硬度檢測 151 4.4.8 韌性評估 153 4.4.9 附著性評估 157 4.4.10 磨潤性質檢測 159 4.4.11 防蝕性質檢測 164 4.5 不同硼含量對於HZ系列ZR-TI- B-N薄膜性質之影響 169 4.5.1 成分分析 169 4.5.2 晶相分析 171 4.5.3 鍵結分析 174 4.5.4 表面形貌分析 175 4.5.5 微結構分析 178 4.5.6 表面色度分析 186 4.5.7 硬度檢測 187 4.5.8 韌性評估 189 4.5.9 附著性評估 193 4.5.10 磨潤性質檢測 195 4.5.11 防蝕性質檢測 200 4.6 均質TI-ZR-B-N薄膜之綜合性質評估 205 4.6.1 三元相圖(Ti-B-N及Zr-B-N) 205 4.6.2 硬度之等高線分佈圖 206 4.6.3 表面粗糙度相比 208 4.6.4 硬度相比 209 4.6.5 韌性相比 210 4.6.6 磨潤性相比 211 4.6.7 防蝕性相比 212 第五章 結論 214 參考文獻 217 授權書 233

    [1] V. Meille, "Review on methods to deposit catalysts on structured surfaces," Applied Catalysis A: General, vol. 315, pp. 1-17, 2006.
    [2] J. Chai, S. Shen, N. Miura, and D. Bergado, "Simple Method of Modeling PVD-Improved Subsoil," Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, pp. 965-972, 2001.
    [3] P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, pp. 159-172, 2000.
    [4] V. Linss, S. E. Rodil, P. Reinke, M. G. Garnier, P. Oelhafen, U. Kreissig, et al., "Bonding characteristics of DC magnetron sputtered B–C–N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy," Thin Solid Films, vol. 467, pp. 76-87, 2004.
    [5] S. Ulrich, H. Ehrhardt, T. Theel, J. Schwan, S. Westermeyr, M. Scheib, et al., "Phase separation in magnetron sputtered superhard BCN thin films," Diamond and Related Materials, vol. 7, pp. 839-844, 1998.
    [6] D. K. Merl, P. Panjan, M. Čekada, and M. Maček, "The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates," Electrochimica Acta, vol. 49, pp. 2004.
    [7] M. Nordin, M. Larsson, and S. Hogmark, "Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide," Surface and Coatings Technology, vol. 106, pp. 234-241, 1998.
    [8] S. PalDey and S. C. Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review," Materials Science and Engineering: A, vol. 342, pp. 58-79, 2003.
    [9] B. Rother and H. Kappl, "Results on the thermal stability of cathodic arc-deposited (Cr,B) N coatings," Surface and Coatings Technology, vol. 73, pp. 14-17, 1995.
    [10] D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, and J. J. Moore, "Synthesis and characterization of Ti-Si-C-N films," Metallurgical and Materials Transactions A, vol. 30, pp. 2439-2447, 1999.
    [11] A. Glaser, S. Surnev, F. P. Netzer, N. Fateh, G. A. Fontalvo, and C. Mitterer, "Oxidation of vanadium nitride and titanium nitride coatings," Surface Science, vol. 601, pp. 2007.
    [12] W. Gissler, "Structure and properties of Ti-B-N coatings," Surface and Coatings Technology, vol. 68–69, pp. 556-563, 1994.
    [13] P. Hammer, A. Steiner, R. Villa, M. Baker, P. N. Gibson, J. Haupt, et al., "Titanium boron nitride coatings of very high hardness," Surface and Coatings Technology, vol. 68–69, pp. 194-198, 1994.
    [14] D. H. Jung, H. Kim, G. R. Lee, B. Park, J. J. Lee, and J. H. Joo, "Deposition of Ti–B–N films by ICP assisted sputtering," Surface and Coatings Technology, vol. 174–175, pp. 638-642, 2003.
    [15] J.-W. Lee, C.-H. Cheng, H.-W. Chen, Y.-C. Chan, J.-G. Duh, and L.-W. Ho, "Effects of Boron and Nitrogen Contents on the Microstructures and Mechanical Properties of Cr-B-N Nanocomposite Thin Films," Procedia Engineering, vol. 36, pp. 360-367, 2012.
    [16] J.-W. Lee, C. Chih-Hong, H.-W. Chen, L.-W. Ho, J.-G. Duh, and Y.-C. Chan, "The influence of boron contents on the microstructure and mechanical properties of Cr–B–N thin films," Vacuum, vol. 87, pp. 191-194, 2013.
    [17] Z.-J. Liu, Y. H. Lu, and Y. G. Shen, "Grain growth in nanocomposite Ti–B–N films during deposition: The effect of amorphous phase precipitation," Journal of Materials Research, vol. 21, pp. 82-87, 2006.
    [18] P. H. Mayrhofer and M. Stoiber, "Thermal stability of superhard Ti–B–N coatings," Surface and Coatings Technology, vol. 201, pp. 6148-6153, 2007.
    [19] J. Neidhardt, Z. Czigany, B. Sartory, R. Tessadri, M. O’Sullivan, and C. Mitterer, "Nanocomposite Ti–B–N coatings synthesized by reactive arc evaporation," Acta Materialia, vol. 54, pp. 4193-4200, 2006.
    [20] C. Rebholz, A. Leyland, P. Larour, C. Charitidis, S. Logothetidis, and A. Matthews, "The effect of boron additions on the tribological behaviour of TiN coatings produced by electron-beam evaporative PVD," Surface and Coatings Technology, vol. 116–119, pp. 648-653, 1999.
    [21] B. Rother and H. Kappl, "Effects of low boron concentrations on the thermal stability of hard coatings," Surface and Coatings Technology, vol. 96, pp. 163-168, 1997.
    [22] A. Ubleis, C. Mitterer, and R. Ebner, "Optical properties and corrosion behaviour of sputtered Zr-B and Zr-B-N coatings," Surface and Coatings Technology, vol. 60, pp. 571-576, 1993.
    [23] M. Urgen, A. F. Cakir, O. L. Eryilmaz, and C. Mitterer, "Corrosion of zirconium boride and zirconium boron nitride coated steels," Surface and Coatings Technology, vol. 71, pp. 60-66, 1995.
    [24] G.-J. Zhang and T. Ohji, "Effect of BN content on elastic modulus and bending strength of SiC-BN in situ composites," Journal of Materials Research, vol. 15, pp. 1876-1880, 2000.
    [25] J. E. Sundgren, "Structure and properties of TiN coatings," Thin Solid Films, vol. 128, pp. 21-44, 1985.
    [26] S. Zhang and W. Zhu, "TiN coating of tool steels: a review," Journal of Materials Processing Technology, vol. 39, pp. 165-177, 1993.
    [27] W.-J. Chou, G.-P. Yu, and J.-H. Huang, "Deposition of TiN thin films on Si(100) by HCD ion plating," Surface and Coatings Technology, vol. 140, pp. 206-214, 2001.
    [28] B. E. Jacobson, R. Nimmagadda, and R. F. Bunshah, "Microstructures of TiN and Ti2N deposits prepared by activated reactive evaporation," Thin Solid Films, vol. 63, pp. 333-339, 1979.
    [29] J. E. Sundgren, B. O. Johansson, H. T. G. Hentzell, and S. E. Karlsson, "Mechanisms of reactive sputtering of titanium nitride and titanium carbide III: Influence of substrate bias on composition and structure," Thin Solid Films, vol. 105, pp. 385-393, 1983.
    [30] J. E. Sundgren, B. O. Johansson, and S. E. Karlsson, "Mechanisms of reactive sputtering of titanium nitride and titanium carbide I: Influence of process parameters on film composition," Thin Solid Films, vol. 105, pp. 353-366, 1983.
    [31] J. E. Sundgren, B. O. Johansson, S. E. Karlsson, and H. T. G. Hentzell, "Mechanisms of reactive sputtering of titanium nitride and titanium carbide II: Morphology and structure," Thin Solid Films, vol. 105, pp. 367-384, 1983.
    [32] J. Deng, J. Liu, J. Zhao, and W. Song, "Wear mechanisms of PVD ZrN coated tools in machining," International Journal of Refractory Metals and Hard Materials, vol. 26, pp. 164-172, 2008.
    [33] D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, and N. Ming, "Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes," Wear, vol. 264, pp. 298-307, 2008.
    [34] G. Lopez and M. H. Staia, "High-temperature tribological characterization of zirconium nitride coatings," Surface and Coatings Technology, vol. 200, pp. 2092-2099, 2005.
    [35] A. Matthews, "Developments in PVD tribological coatings (IUVSTA highlights seminar-vacuum metallurgy division)," Vacuum, vol. 65, pp. 237-238, 2002.
    [36] J. C. Caicedo, C. Amaya, L. Yate, O. Nos, M. E. Gomez, and P. Prieto, "Hard coating performance enhancement by using [Ti/TiN]n, [Zr/ZrN]n and [TiN/ZrN]n multilayer system," Materials Science and Engineering: B, vol. 171, pp. 56-61, 2010.
    [37] T. P. Mollart, J. Haupt, R. Gilmore, and W. Gissler, "Tribological behaviour of homogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2 multilayer coatings," Surface and Coatings Technology, vol. 86–87, Part 1, pp. 231-236, 1996.
    [38] E. Budke, J. Krempel-Hesse, H. Maidhof, and H. Schussler, "Decorative hard coatings with improved corrosion resistance," Surface and Coatings Technology, vol. 112, pp. 108-113, 1999.
    [39] X. Y. Li, G. B. Li, F. J. Wang, T. C. Ma, D. Z. Yang, and Y. C. Zhu, "Investigation on properties of ceramic coatings of ZrN," Vacuum, vol. 43, pp. 653-656, 1992.
    [40] D. Pilloud, A. S. Dehlinger, J. F. Pierson, A. Roman, and L. Pichon, "Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics," Surface and Coatings Technology, vol. 174–175, pp. 338-344, 2003.
    [41] F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Mendez, J. A. Mendes, et al., "Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films," Surface and Coatings Technology, vol. 191, pp. 317-323, 2005.
    [42] P. Zeman, R. Čerstvy, P. H. Mayrhofer, C. Mitterer, and J. Musil, "Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings," Materials Science and Engineering: A, vol. 289, pp. 189-197, 2000.
    [43] J. Musil, P. Zeman, H. Hruby, and P. H. Mayrhofer, "ZrN/Cu nanocomposite film—a novel superhard material," Surface and Coatings Technology, vol. 120–121, pp. 179-183, 1999.
    [44] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mannling, P. Nesladek, et al., "Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa," Surface and Coatings Technology, vol. 133–134, pp. 152-159, 2000.
    [45] J. Musil and J. Vlček, "Magnetron sputtering of films with controlled texture and grain size," Materials Chemistry and Physics, vol. 54, pp. 116-122, 1998.
    [46] S. Vepřek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jı́lek, and M. Šı́ma, "Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness," Surface and Coatings Technology, vol. 108–109, pp. 138-147, 1998.
    [47] W. D. Sproul, P. J. Rudnik, and C. A. Gogol, "The effect of target power on the nitrogen partial pressure level and hardness of reactively sputtered titanium nitride coatings," Thin Solid Films, vol. 171, pp. 171-181, 1989.
    [48] J. A. Thornton, "High Rate Thick Film Growth," Annual Review of Materials Science, vol. 7, pp. 239-260, 1977.
    [49] H. Ljungcrantz, M. Oden, L. Hultman, J. E. Greene, J. Sundgren, x, et al., "Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO," Journal of Applied Physics, vol. 80, pp. 6725-6733, 1996.
    [50] D. W. Hoffman and J. A. Thornton, "Internal stresses in sputtered chromium," Thin Solid Films, vol. 40, pp. 355-363, 1977.
    [51] D. W. Hoffman and J. A. Thornton, "The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures," Thin Solid Films, vol. 45, pp. 387-396, 1977.
    [52] W. D. Sproul, "Very high rate reactive sputtering of TiN, ZrN and HfN," Thin Solid Films, vol. 107, pp. 141-147, 1983.
    [53] B. Abdallah, M. Naddaf, and M. A-Kharroub, "Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 298, pp. 55-60, 2013.
    [54] J. V. Ramana, S. Kumar, C. David, A. K. Ray, and V. S. Raju, "Characterisation of zirconium nitride coatings prepared by DC magnetron sputtering," Materials Letters, vol. 43, pp. 73-76, 2000.
    [55] W.-J. Chou, G.-P. Yu, and J.-H. Huang, "Bias effect of ion-plated zirconium nitride film on Si(100)," Thin Solid Films, vol. 405, pp. 162-169, 2002.
    [56] Z. Wokulski, "Mechanical Properties of TiN Whiskers," physica status solidi (a), vol. 120, pp. 175-184, 1990.
    [57] C.-P. Liu and H.-G. Yang, "Systematic study of the evolution of texture and electrical properties of ZrNx thin films by reactive DC magnetron sputtering," Thin Solid Films, vol. 444, pp. 111-119, 2003.
    [58] V. N. Zhitomirsky, I. Grimberg, R. L. Boxman, N. A. Travitzky, S. Goldsmith, and B. Z. Weiss, "Vacuum arc deposition and microstructure of ZrN-based coatings," Surface and Coatings Technology, vol. 94–95, pp. 207-212, 1997.
    [59] C.-P. Liu and H.-G. Yang, "Deposition temperature and thickness effects on the characteristics of dc-sputtered ZrNx films," Materials Chemistry and Physics, vol. 86, pp. 370-374, 2004.
    [60] C. Lopez-Cartes, D. Martinez-Martinez, J. C. Sanchez-Lopez, A. Fernandez, A. Garcia-Luis, M. Brizuela, et al., "Characterization of nanostructured Ti–B–(N) coatings produced by direct current magnetron sputtering," Thin Solid Films, vol. 515, pp. 3590-3596, 2007.
    [61] S. M. Aouadi, F. Namavar, T. Z. Gorishnyy, and S. L. Rohde, "Characterization of TiBN films grown by ion beam assisted deposition," Surface and Coatings Technology, vol. 160, pp. 145-151, 2002.
    [62] D. V. Shtansky, A. N. Sheveiko, M. I. Petrzhik, F. V. Kiryukhantsev-Korneev, E. A. Levashov, A. Leyland, et al., "Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings," Surface and Coatings Technology, vol. 200, pp. 208-212, 2005.
    [63] A. Garcia-Luis, M. Brizuela, J. I. Onate, J. C. Sanchez-Lopez, D. Martinez-Martinez, C. Lopez-Cartes, et al., "Mechanical properties of nanocrystalline Ti–B–(N) coatings produced by DC magnetron sputtering," Surface and Coatings Technology, vol. 200, pp. 734-738, 2005.
    [64] P. H. Mayrhofer, C. Mitterer, J. G. Wen, J. E. Greene, and I. Petrov, "Self-organized nanocolumnar structure in superhard TiB2 thin films," Applied Physics Letters, vol. 86, pp. 131909-131909-3, 2005.
    [65] L. Dobrzanski, M. Staszuk, J. Konieczny, W. Kwaœny, and M. Pawlyta, "Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics," Archives of Materials Science and Engineering, vol. 38, pp. 48-54, 2009.
    [66] P. H. Mayrhofer, C. Mitterer, J. G. Wen, I. Petrov, and J. E. Greene, "Thermally induced self-hardening of nanocrystalline Ti-B-N thin films," Journal of Applied Physics, vol. 100, pp. 044301-044301-7, 2006.
    [67] B. Matthes, E. Broszeit, and K. H. Kloos, "Tribological behaviour and corrosion performance of Ti-B-N hard coatings under plastic manufacturing conditions," Surface and Coatings Technology, vol. 57, pp. 97-104, 1993.
    [68] C. Heau and J. P. Terrat, "Ultrahard Ti–B–N coatings obtained by reactive magnetron sputtering of a Ti–B target," Surface and Coatings Technology, vol. 108–109, pp. 332-339, 1998.
    [69] E. Brandstetter, C. Mitterer, and R. Ebner, "A transmission electron microscopy study on sputtered Zr-B and Zr-B-N films," Thin Solid Films, vol. 201, pp. 123-135, 1991.
    [70] C. Mitterer, A. Ubleis, and R. Ebner, "Sputter deposition of wear-resistant coatings within the system Zr-B-N," Materials Science and Engineering: A, vol. 140, pp. 670-675, 1991.
    [71] Y.-W. Lin, J.-H. Huang, and G.-P. Yu, "Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering," Thin Solid Films, vol. 518, pp. 7308-7311, 2010.
    [72] D. V. Shtansky, P. V. Kiryukhantsev-Korneev, I. A. Bashkova, A. N. Sheveiko, and E. A. Levashov, "Multicomponent nanostructured films for various tribological applications," International Journal of Refractory Metals and Hard Materials, vol. 28, pp. 32-39, 2010.
    [73] L. Vel, G. Demazeau, and J. Etourneau, "Cubic boron nitride: synthesis, physicochemical properties and applications," Materials Science and Engineering: B, vol. 10, pp. 149-164, 1991.
    [74] D. J. Kester, K. S. Ailey, and R. F. Davis, "Deposition and characterization of boron nitride thin films," Diamond and Related Materials, vol. 3, pp. 332-336, 1994.
    [75] T. Klotzbu‥cher, W. Pfleging, D. A. Wesner, M. Mergens, and E. W. Kreutz, "Structural and chemical characterization of BN thin films deposited onto Si(100) and graphite substrates by pulsed laser deposition," Diamond and Related Materials, vol. 5, pp. 525-529, 1996.
    [76] M. Kuhr, S. Reinke, and W. Kulisch, "Nucleation of cubic boron nitride (c-BN) with ion-induced plasma-enhanced CVD," Diamond and Related Materials, vol. 4, pp. 375-380, 1995.
    [77] T. Z. Gorishnyy, D. Mihut, S. L. Rohde, and S. M. Aouadi, "Physical and mechanical properties of reactively sputtered chromium boron nitride thin films," Thin Solid Films, vol. 445, pp. 96-104, 2003.
    [78] K. P. Budna, P. H. Mayrhofer, J. Neidhardt, E. Hegedũs, I. Kovacs, L. Toth, et al., "Effect of nitrogen-incorporation on structure, properties and performance of magnetron sputtered CrB2," Surface and Coatings Technology, vol. 202, pp. 3088-3093, 2008.
    [79] Y. Sakamaoto, M. Nose, T. Mae, E. Honbo, M. Zhou, and K. Nogi, "Structure and properties of Cr–B, Cr–B–N and multilayer Cr–B/Cr–B–N thin films prepared by r.f.-sputtering," Surface and Coatings Technology, vol. 174–175, pp. 444-449, 2003.
    [80] M. Zhou, M. Nose, and K. Nogi, "Influence of nitrogen on the structure and mechanical properties of r.f.-sputtered Cr–B–N thin films," Surface and Coatings Technology, vol. 183, pp. 45-50, 2004.
    [81] D. V. Shtansky, F. V. Kiryukhantsev-Korneev, A. N. Sheveiko, I. A. Bashkova, O. V. Malochkin, E. A. Levashov, et al., "Structure and properties of Ti-B-N, Ti-Cr-B-(N), and Cr-B-(N) coatings deposited by magnetron sputtering of targets prepared by self-propagating high-temperature synthesis," Physics of the Solid State, vol. 47, pp. 252-262, 2005.
    [82] J. Lin, J. J. Moore, W. C. Moerbe, M. Pinkas, B. Mishra, G. L. Doll, et al., "Structure and properties of selected (Cr–Al–N, TiC–C, Cr–B–N) nanostructured tribological coatings," International Journal of Refractory Metals and Hard Materials, vol. 28, pp. 2-14, 2010.
    [83] S. M. Aouadi, F. Namavar, E. Tobin, N. Finnegan, R. T. Haasch, R. Nilchiani, et al., "Characterization of CrBN films deposited by ion beam assisted deposition," Journal of Applied Physics, vol. 91, pp. 1040-1045, 2002.
    [84] P. V. Kiryukhantsev-Korneev, J. F. Pierson, M. I. Petrzhik, M. Alnot, E. A. Levashov, and D. V. Shtansky, "Effect of nitrogen partial pressure on the structure, physical and mechanical properties of CrB2 and Cr–B–N films," Thin Solid Films, vol. 517, pp. 2675-2680, 2009.
    [85] K. P. Budna, J. Neidhardt, P. H. Mayrhofer, and C. Mitterer, "Synthesis–structure–property relations for Cr–B–N coatings sputter deposited reactively from a Cr–B target with 20 at% B," Vacuum, vol. 82, pp. 771-776, 2008.
    [86] V. Chapusot, J. F. Pierson, F. Lapostolle, and A. Billard, "Arc-evaporated nanocomposite zirconium-based boronitride coatings," Materials Chemistry and Physics, vol. 114, pp. 780-784, 2009.
    [87] C. H. Ma, J. H. Huang, and H. Chen, "Nanohardness of nanocrystalline TiN thin films," Surface and Coatings Technology, vol. 200, pp. 3868-3875, 2006.
    [88] I. A. Ovid'ko, "Deformation of Nanostructures," Science, vol. 295, p. 2386, March 29, 2002.
    [89] J. Patscheider, T. Zehnder, and M. Diserens, "Structure–performance relations in nanocomposite coatings," Surface and Coatings Technology, vol. 146–147, pp. 201-208, 2001.
    [90] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Physical Review, vol. 56, pp. 978-982, 1939.
    [91] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction vol. 3: Prentice hall Upper Saddle River, NJ, 2001.
    [92] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
    [93] G. M. Pharr, "Measurement of mechanical properties by ultra-low load indentation," Materials Science and Engineering: A, vol. 253, pp. 151-159, 1998.
    [94] G. M. Pharr, W. C. Oliver, and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of Materials Research, vol. 7, pp. 613-617, 1992.
    [95] S. Zhang, D. Sun, Y. Fu, and H. Du, "Toughness measurement of thin films: a critical review," Surface and Coatings Technology, vol. 198, pp. 74-84, 2005.
    [96] M. Oden, C. Ericsson, G. Hakansson, and H. Ljungcrantz, "Microstructure and mechanical behavior of arc-evaporated Cr–N coatings," Surface and Coatings Technology, vol. 114, pp. 39-51, 1999.
    [97] "Verein Deutscher Ingenieure Normen, VDI 3198, VDI-Verlag, Dusseldorf," 1991.
    [98] G. R. H. Jehn, N. Siegel (Eds.), "DIN Fachbericht 39, Characterisierung Dunner Schichten, Beuth Verlag, Berlin," p. 213, 1993.
    [99] H. J. Wasserman and J. S. Vermaak, "On the determination of a lattice contraction in very small silver particles," Surface Science, vol. 22, pp. 164-172, 1970.
    [100] G. P. Jones and J. Pearson, "Factors affecting the grain-refinement of aluminum using titanium and boron additives," Metallurgical Transactions B, vol. 7, pp. 223-234, 1976.
    [101] C. P. Constable, J. Yarwood, and W. D. Munz, "Raman microscopic studies of PVD hard coatings," Surface and Coatings Technology, vol. 116–119, pp. 155-159, 1999.
    [102] S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, "Resonant Raman scattering in cubic and hexagonal boron nitride," Physical Review B, vol. 71, p. 205201, 2005.
    [103] P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, "Review of advances in cubic boron nitride film synthesis," Materials Science and Engineering: R: Reports, vol. 21, pp. 47-100, 1997.
    [104] H. Sachdev, "Influence of impurities on the morphology and Raman spectra of cubic boron nitride," Diamond and Related Materials, vol. 12, pp. 1275-1286, 2003.
    [105] E. Torok, A. J. Perry, L. Chollet, and W. D. Sproul, "Young's modulus of TiN, TiC, ZrN and HfN," Thin Solid Films, vol. 153, pp. 37-43, 1987.
    [106] M. A. Baker, M. A. Monclus, C. Rebholz, P. N. Gibson, A. Leyland, and A. Matthews, "A study of the nanostructure and hardness of electron beam evaporated TiAlBN Coatings," Thin Solid Films, vol. 518, pp. 4273-4280, 2010.
    [107] M. A. Baker, S. Klose, C. Rebholz, A. Leyland, and A. Matthews, "Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings," Surface and Coatings Technology, vol. 151–152, pp. 338-343, 2002.
    [108] A. Leyland and A. Matthews, "On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour," Wear, vol. 246, pp. 1-11, 2000.
    [109] S. J. Bull, "Failure modes in scratch adhesion testing," Surface and Coatings Technology, vol. 50, pp. 25-32, 1991.
    [110] P. J. Withers and H. K. D. H. Bhadeshia, "Residual stress. Part 1-Measurement techniques," Materials Science and Technology, vol. 17, pp. 355-365, 2001.
    [111] P. J. Withers and H. K. D. H. Bhadeshia, "Residual stress. Part 2-Nature and origins," Materials Science and Technology, vol. 17, pp. 366-375, 2001.
    [112] C. A. Carrasco, V. Vergara S, R. Benavente G, N. Mingolo, Rı, amp, et al., "The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates," Materials Characterization, vol. 48, pp. 81-88, 2002.
    [113] A. J. Perry, "Scratch adhesion testing of hard coatings," Thin Solid Films, vol. 107, pp. 167-180, 1983.
    [114] T. J. da Silva and J. G. Moreira, "Kinetic roughening on rough substrates," Physical Review E, vol. 56, pp. 4880-4883, 1997.
    [115] M. Kardar, G. Parisi, and Y.-C. Zhang, "Dynamic Scaling of Growing Interfaces," Physical Review Letters, vol. 56, pp. 889-892, 1986.
    [116] M. C. Salvadori, D. R. Martins, and M. Cattani, "DLC coating roughness as a function of film thickness," Surface and Coatings Technology, vol. 200, pp. 5119-5122, 2006.
    [117] A. M. Hassan and A. S. Al-Bsharat, "Influence of burnishing process on surface roughness, hardness, and microstructure of some non-ferrous metals," Wear, vol. 199, pp. 1-8, 1996.
    [118] F. Svahn, A. Kassman-Rudolphi, and E. Wallen, "The influence of surface roughness on friction and wear of machine element coatings," Wear, vol. 254, pp. 1092-1098, 2003.
    [119] K. Kusaka, D. Taniguchi, T. Hanabusa, and K. Tominaga, "Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering," Vacuum, vol. 59, pp. 806-813, 2000.
    [120] W.-F. Wu and B.-S. Chiou, "Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering," Thin Solid Films, vol. 298, pp. 221-227, 1997.
    [121] A. G. Evans, G. B. Crumley, and R. E. Demaray, "On the mechanical behavior of brittle coatings and layers," Oxidation of Metals, vol. 20, pp. 193-216, 1983.
    [122] A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, "Structures and properties of hard and superhard nanocomposite coatings," Physics-Uspekhi, vol. 52, p. 29, 2009.
    [123] J. Musil, "Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness," Surface and Coatings Technology, vol. 207, pp. 50-65, 2012.
    [124] S. Zhang, D. Sun, Y. Fu, and H. Du, "Recent advances of superhard nanocomposite coatings: a review," Surface and Coatings Technology, vol. 167, pp. 113-119, 2003.
    [125] A. A. Voevodin, J. J. Hu, J. G. Jones, T. A. Fitz, and J. S. Zabinski, "Growth and structural characterization of yttria-stabilized zirconia–gold nanocomposite films with improved toughness," Thin Solid Films, vol. 401, pp. 187-195, 2001.
    [126] E. Alkhateeb, R. Ali, S. Virtanen, and N. Popovska, "Electrochemical evaluation of the corrosion behavior of steel coated with titanium-based ceramic layers," Surface and Coatings Technology, vol. 205, pp. 3006-3011, 2011.
    [127] G. Bertrand, H. Mahdjoub, and C. Meunier, "A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings," Surface and Coatings Technology, vol. 126, pp. 199-209, 2000.
    [128] E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, "Origin of Compressive Residual Stress in Polycrystalline Thin Films," Physical Review Letters, vol. 88, p. 156103, 2002.
    [129] Z. Zhiguo, L. Tianwei, X. Jun, D. Xinlu, and D. Chuang, "N-rich Zr–N films deposited by unbalanced magnetron sputtering enhanced with a highly reactive MW-ECR plasma," Surface and Coatings Technology, vol. 200, pp. 4918-4922, 2006.
    [130] L. Tian-Wei, D. Xin-Lu, W. Xiao-Ying, W. Ying-Min, Z. Jian-Xin, and D. Chuang, "Structures and Properties of Zr–N Films Prepared by ECR-Microwave Plasma Source Enhanced Direct-Current Magnetron Sputtering Under Different N2 Partial Pressures," Chinese Physics Letters, vol. 21, p. 2008, 2004.

    QR CODE