簡易檢索 / 詳目顯示

研究生: 潘語梵
Yu-Fan - Pan
論文名稱: 應用於快速原型系統之無機黏土/光硬化樹脂奈米複合材料之研究
The Research of Inorganic Clays / Photo-resin Nanocomposite Applied to Rapid Prototyping System
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 游進陽
Chin-Yang Yu
邱智瑋
Chih-Wei Chiu
彭勝宏
Sheng-Hung Peng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 快速原型技術無機黏土光硬化樹脂
外文關鍵詞: Rapid prototyping(RP), Inorganic clay, Photopolymer
相關次數: 點閱:287下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快速原型(Rapid prototyping)技術為現在產業界熱門的生產技術,其優點為電腦控制全自動化、生產過程快速便利及能大幅度降低成本,但製作出來的物件強度差,不能應用在高強度的工件加工,故本研究針對快速原型系統所使用的材料物性做改善,利用奈米無機黏土使聚合物具有更高的強度、模量、耐熱性、尺寸穩定性及阻隔性,添加到光硬化樹脂中,提升其性能。此研究選擇凹土棒土、蒙脫土及人工合成鋰皂石分別以不同比例添加到光硬化樹脂中,探討無機黏土(clays)/光硬化樹脂奈米複合材料各項性能,並進行一系列檢測與討論。由傅立葉紅外線光譜儀(FT-IR) 及X-ray繞射分析儀探討Clays於光硬化樹脂基材中官能基與結構之變化。熱性質部分以熱重量損失分析儀(TGA)、熱示差掃描卡計(DSC)及動態機械黏彈分析儀(DMA)分別探討熱裂解溫度(Td)、玻璃轉移溫度(Tg)及動態玻璃轉移溫度(Tgd),結果發現添加Clays的光硬化樹脂的熱裂解溫度皆有提升。機械性質部分則使用萬能試驗拉伸機及硬度計進行分析,結果顯示添加Clays的光硬化樹脂的拉伸強度與硬度皆有提升,且蒙脫土(MMT)/光硬化樹脂拉伸強度與硬度分別提升74.4%及8.4%。最後由掃描式電子顯微鏡(SEM)進行Clays/光硬化樹脂拉伸斷裂面分析,結果發現隨著Clays添加量增加使Clays/光硬化樹脂奈米複合材料的拉伸斷裂面其作用力痕跡越皺褶。


    Rapid Prototyping (RP) can produce objects within a short time without the technical requirements, the process is fully automated, and there is no large amount of scrap. But the physical properties of material are the main problem for RP and become an obstacle to the application.
    In this research, the physical properties of the materials utilized in the rapid prototyping system are improved. The nano-clay makes the polymer have higher strength, modulus, heat resistance, dimensional stability and barrier properties. The effects of attapulgite nanocomposites, montmorillonite nanocomposites and laponite nanocomposite materials are discussed.
    The results showed that thermal properties are slightly improved. The tensile strength of attapulgite and montmorillonite increased with the increase of the content. The hardness of nanocomposites with attapulgite, montmorillonite and laponite increased. In addition, the tensile cross-section can see that the increase in the stress traces and more wrinkled.

    中文摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.2.1 快速原型原理 2 1.2.2 快速原型系統分類 3 1.2.3 光硬化樹脂與硬化反應 11 1.2.4 奈米複合材料 15 1.3 研究動機與目的 19 第二章 實驗方法 20 2.1 實驗材料 20 2.2 實驗步驟與流程 23 2.3 實驗設備與儀器 25 2.4 樣品製備 33 第三章 實驗結果與討論 35 3.1 材料結構分析 35 3.1.1 傅立葉紅外線光譜儀(FT-IR) 35 3.1.2 X射線繞射分析儀(XRD) 38 3.2 熱性質 42 3.2.1 熱重損失分析 42 3.2.2 熱示差分析 47 3.2.3 動態機械黏彈分析 52 3.3 機械性質 56 3.3.1 拉伸測試 56 3.3.2 硬度測試 61 3.4 表面型態分析 64 第四章 結論 74 參考文獻 77

    [1] D.T. Pham and R.S. Gault, “ A comparison of rapid prototyping technologies”, International Journal of Machine Tools & Manufacture, Vol. 38, No. 10–11, pp. 1257–1287 , 1998 .
    [2] A.K. Matta, D. Ranga Raju and K.N.S. Suman, “The integration of CAD/CAM and Rapid Prototyping in Product Development: A review”, Materials Today: Proceedings, Vol. 2, No. 4–5, pp. 3438-3445, 2015.
    [3] K. H. Chang, “Chapter 14 – Rapid Prototyping”, e-Design, Computer-Aided Engineering Design, pp. 743–786, 2015.
    [4] R. N. Chuk and V J. Thomson, “A comparison of rapid prototyping techniques used for wind tunnel model fabrication”, Rapid Prototyping Journal, Vol.4, No.2-4, pp. 185-196, 1998.
    [5] S. H. Chiu and D. C. Wu, “Preparation and physical properties of photopolymer/SiO2 nanocomposite for rapid prototyping system” , Journal of Applied Polymer Science, Vol.107, No. 6, pp. 3529-3534, 2008.
    [6] J. D. Booker and K. G. Swift, “Chapter 8 – Rapid Prototyping Processes”, Manufacturing Process Selection Handbook, , pp. 227–241, 2013.

    [7] J. Kechagias, “An experimental investigation of the surface roughness of parts produced by LOM process”, Rapid Prototyping Journal, Vol. 13, No. 1, pp.17-22, 2007.
    [8] M. W. Khaing, J. Y. H. Fuh and L. Lu, “Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts”, Journal of Materials Processing Technology, Vol.113, No.1-3, pp. 269-272, 2001.
    [9] A. Simchi, F. Petzoldt and H. Pohl, “On the development of direct metal laser sintering for rapid tooling”, Journal of Materials Processing Technology, Vol.141, No. 3, pp. 319-328, 2003.
    [10] S. H. Chiu, S. H. Pong, D. C. Wu and C. H. Lin, “A study of photomask correction method in area-forming rapid prototyping system”, Rapid Prototyping Journal, Vol.14, No. 5, pp. 285-292, 2008.
    [11] 吳智偉,「新型光罩式快速原型系統之研發」,臺北,國立台灣科技大學,纖維及高分子工程系,2001。
    [12] 劉瑞祥,「感光性高分子」,台南,復文書局,1998。
    [13] S. H. Chiu, S. T. Wicaksono, K. T. Chen and S. H. Pong, “Morphology and properties of a photopolymer/clay nanocomposite prepared by a rapid prototyping system”, Science and Engineering of Composite Materials, Vol.21, No. 2, pp. 205-210, 2014.
    [14] 周洺偉,「陽離子型紫外光硬化樹脂之研究」,台北科技大學,化學工程研究所,2007。
    [15] 孫婉庭,「光硬化樹脂添加Halloysite奈米複合材料應用在快速原型系統之研究」,國立台灣科技大學,材料科學與工程系,2016。
    [16] 陳津、魏麗喬、許並社,「奈米非金屬功能材料」,北京,化學工業出版社,2007。
    [17] 周森,「複合材料-奈米·生物科技」,新北市,全威圖書有限公司,2001。
    [18] S. K. Su, J. H. Gu, H. T. Lee, C. L. Wu, C. H. Tsou and M. C. Suen, “Preparation and characterization of biodegradable polyurethanes composites containing thermally treated attapulgite nanorods”, Polymer Bulletin, Vol. 73, No. 11, pp. 3119-3141, 2016.
    [19] H. T. Lee, C. H. Tsou, C. L. Li, J. H. Gu, C. L. Wu, J. J. Hwang and M. C. Suen, “Preparation and Characterization of Biodegradable Polyurethane Composites Containing Attapulgite Nanorods”, Advances in Polymer Technology, 2016.
    [20] L. Shen, Y. Lin, Q. Du and W. Zhong, “Studies on structure–property relationship of polyamide-6/attapulgite nanocomposites”, Composites Science and Technology, Vol. 66, No. 13, pp. 2242-224, 2006.
    [21] H. Pan and D. Chen, “Preparation and characterization of waterborne polyurethane/attapulgite nanocomposites”, European Polymer Journal, Vol. 43, No. 9, pp. 3766-3772, 2007.
    [22] B. Xu, W. M. Huang, Y. T. Pei, Z. G. Chen, A. Kraft, R. Reuben, J. Th. M. De Hosson and Y. Q. Fu, “Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites”, European Polymer Journal, Vol. 45, No. 7, pp. 1904-1911, 2009.
    [23] 陳學仕、李世陽,「高分子奈米複合材料」,工研院化所有機無複合室,高分子/層狀黏土複合材料經濟部科專計畫,化工資訊ChemNet奈米專欄,2002。
    [24] 陳岡宏,「蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究」,國立中央大學,化學工程與材料工程研究所,2013。
    [25] C. Decker, L.t Keller, K. Zahouily and S. Benfarhi, “Synthesis of nanocomposite polymers by UV-radiation curing”, Polymer, Vol. 46, No. 17, pp. 6640-6648, 2005.
    [26] F. M. Uhl, D. C. Webster, S. P. Davuluri and S. C. Wong, “UV curable epoxy acrylate–clay nanocomposites”, European Polymer Journal, Vol. 42, No. 10, pp. 2596-2605, 2006.
    [27] M. R. Islam, M. D. H. Beg and S. S. Jamari, “Dispersion of montmorillonite nanoclays and their effects on the thermomechanical, structural and drying properties of palm oil based coating”, Progress in Organic Coatings, Vol. 91, pp. 17-24, 2016.
    [28] N. Negrete-Herrera, J. L. Putaux and E. Bourgeat-Lami, “Synthesis of polymer/Laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchanged Laponite clay platelets”, Progress in Solid State Chemistry, Vol. 34, No. 2–4, pp. 121-137, 2006.
    [29] Q. S. Zhang, X. W. Li, Y. P. Zhao and L. Chen, “Preparation and performance of nanocomposite hydrogels based on different clay”, Applied Clay Science, Vol. 46, No. 4, pp. 346-350, 2009.
    [30] R. Ruggerone, C. J. G. Plummer, N. N. Herrera, E. Bourgeat-Lami and J. A. E. Månson, “Highly filled polystyrene–laponite nanocomposites prepared by emulsion polymerization”, European Polymer Journal, Vol. 45, No. 3, pp. 621-629, 2009.
    [31] G. F. Perotti, H. S. Barud, Y. Messaddeq, S. J. L. Ribeiro and V. R. L. Constantino, “Bacterial cellulose–laponite clay nanocomposites”, Polymer, Vol. 52, No. 1, pp. 157-163, 2011.
    [32] R. L. D. Oliveira, H. D. S. Barud, D. T. B. D. Salvi, G. F. Perotti, S. J. L. Ribeiro and V. R. L. Constantino, “Transparent organic–inorganic nanocomposites membranes based on carboxymethylcellulose and synthetic clay”, industrial Crops and Products, Vol. 69, pp. 415-423, 2015.
    [33] D. Karalekas and K. Antoniou, “Composite rapid prototyping: Overcoming the drawback of poor mechanical properties”, Journal of Materials Processing Technology, Vol.153-154, No. 1-3, pp. 526-530, 2004.
    [34] W. Cheng, J. Y. H. Fuh, A. Y. C. Nee, Y. S. Wong, H. T. Loh and T. Miyazawa, “Multi-objective optimization of part-building orientation in stereolithography”, Rapid Prototyping Journal, Vol.1, No. 4, pp. 12-23, 1995.
    [35] A. M. Phatak and S. S. Pande, “Optimum part orientation in Rapid Prototyping using genetic algorithm”, Journal of Manufacturing Systems, Vol.31, No. 4, pp. 395-402, 2012.
    [36] ASTM D638, “Standard Test Method for Tensile Properties of Plastics”, American Society for Testing and Material, 2002.
    [37] ASTM D2240, “Standard Test Method for Rubber Property Durometer Hardness”, American Society for Testing and Material, 2002.
    [38] 林麗娟,工業材料,86期,1997。
    [39] 李育德、顏文義、莊祖煌,「聚合物物性」,高立圖書有限公司,1988。
    [40] 黃裕,「聚乳酸-聚烷二醇共聚物添加蒙托土之奈米複合材料的熱性質與結晶行為探討」,國立臺灣科技大學,材料科學與工程研究所,2014。
    [41] Y. G. Lin, P. H. Pi, D. F. Zheng, Z. R. Yang and L. S. Wang, “Preparation and photocatalytic activity of laponite pillared by CeO2 modified TiO2”, Journal of Rare Earths, Vol. 28, No. 5, pp. 732-736, 2010.

    QR CODE