簡易檢索 / 詳目顯示

研究生: 威福知
SIGIT - TRI WICAKSONO
論文名稱: 數位光罩快速原型系統製備之丙烯酸酯系光敏聚合物/無機奈米複合材料之特性
THE PROPERTIES OF ACRYLATE-BASED PHOTOPOLYMER/INORGANIC NANOCOMPOSITE MATERIALS PREPARED BY DIGITAL LIGHT RAPID PROTOTYPING SYSTEM
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 游進陽
Chin-Yang Yu
邱智瑋
Chih-Wei Chiu
吳昌謀
Chang-Mou Wu
彭勝宏
Sheng-Hong Pong
溫哲彥
Che-Yen Wen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 109
中文關鍵詞: 丙烯酸酯系光硬化樹脂無機添加物奈米複合材料快速原型
外文關鍵詞: acrylate-based photopolymer, inorganic filler, nanocomposite, rapid prototyping
相關次數: 點閱:407下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紫外光照射(UV-cured)技術用於合成高分子材料,具有低功耗、時間短與不需要溶劑等優點。適用於紫外光照射的高分子材料被應用於不同的特殊領域與不同的工業領域,儘管已經有許多針對熱成型高分子的研究,但針對紫外光照射高分子的奈米複合材料,其研究卻十分稀少。本研究提出一個新穎、便宜且容易處理的方法,以數位可見光快速原型機來合成丙烯酸酯系光硬化樹脂/無機(clay and BaTiO3)奈米複合材料。這種製程以一次一層的方法將光硬化樹脂奈米複合材料由液體轉變為固體,再藉由一層一層堆疊的方式將樣品製作出來,製作出的樣品將會被測試其機械性質、熱性質、與電性質。其中機械性質的測試包括:利用肖式D型硬度計測試樣品硬度、萬能拉深測試機測試拉伸強度、動態機械分析儀測試彈性模數與儲存模數,熱性質則分別藉由熱重分析儀(TGA);在電性質方面,利用半導體裝置分析儀(Agilent B1500A)於1 M赫茲、電壓從-5到5伏特,量測其介電常數,利用多功能量表(Fluke 117)量測其電阻率。藉由多種特性實驗證實,本研究所製作之光硬化樹脂/無機奈米複合材料適合應用於多種範圍,特別適合於快速原性技術上,此外,也適合運用在相關的應用上,例如:高溫、隔熱、絕緣塗佈、薄膜基材與嵌入式介電材料。


    There are some advantages of UV-cured technology process to synthesize the polymer materials such as low energy consuming, short time processes and solvent-free. These have been promoting UV-curable polymer materials become increasingly applied in various scientific and industrial fields. While a lot of studies have been done on thermal curable polymer systems, but only few have focused on preparation of UV-curable polymer nanocomposites. In this research, we propose a novel, cheap and easy handling method to synthesize acrylate-based photopolymer/inorganic (clay and BaTiO3) nanocomposite by using Digital (visible) Light Rapid Prototyping (DLRP) machine. This preparation method provides layer by layer curing process of photopolymer nanocomposite from liquid to solid resulting a layered structure of cured-prototype. The resulted sample then examined its mechanical, thermal, and its electrical properties. The mechanical properties including hardness, tensile strength, modulus elasticity and storage modulus will be examined by using hardness tester type shore D and universal tensile machine, and dynamic mechanical analyzer, respectively. The degradation temperature will be examined by using thermal gravimetric analyzer (TGA). The electric properties such as dielectric constant and resistivity will be examined by using Agilent B1500A Semiconductor Device Analyzer at 1 MHz and -5 to 5 volt and Fluke 117 multimeter respectively. The prototype of photopolymer/inorganic nanocomposite resulted by this method in accordance with several reliable properties is expected to be feasibly applied in several applications especially on Rapid Prototyping Technology and it will also feasible to be applied in related application such as a special part that subjected to heat, thermal barrier, electrical or electronic insulator or coating, film substrates, and embedded dielectric materials.

    中文摘要 III ABSTRACT IV ACKNOWLEDGEMENT VI CONTENTS VII SYMBOL INDEX X FIGURE INDEX XI TABLE INDEX XIV Chapter 1. INTRODUCTION 1 1.1 ADVANCES, CHALLENGES AND OPPORTUNITIES OF PHOTOPOLYMER NANOCOMPOSITE 1.2 MOTIVATION, CONTRIBUTION AND FUTURE DEVELOPMENT 3 1.3 PROBLEM STATEMENTS AND OBJECTIVES. 4 1.4 EXPERIMENTAL APPROACHES AND STRATEGIES. 6 1.4.1. REAGENTS 6 1.4.2. MATERIALS PREPARATION 6 1.4.3. MATERIALS TESTING 11 Chapter 2. BASIC THEORY OF PHOTOPOLYMERIZATION, NANO COMPOSITING AND PROPERTIES OF PHOTOPOLYMER NANOCOMPOSITE MATERIALS 2.1 PHOTOPOLYMERIZATION 15 2.2 NANOCOMPOSITING 20 2.3 PROPERTIES OF PHOTOPOLYMER MATERIALS 23 2.3.1 THERMAL AND MECHANICAL PROPERTIES 23 2.3.2 DIELECTRIC PROPERTIES 34 Chapter 3. MORPHOLOGY AND PROPERTIES OF A PHOTOPOLYMER/CLAY NANOCOMPOSITE PREPARED BY A RAPID PROTOTYPING SYSTEM 3.1. INTRODUCTION 43 3.2. EXPERIMENTAL PROCEDURE 46 3.3. RESULTS AND DISCUSSION 47 3.4.1. MORPHOLOGY ANALYSIS 47 3.4.2. THERMOGRAFIMETRIC ANALYSIS 50 3.4.3. MECHANICAL PROPERTIES 53 3.4. SUMMARY 57 Chapter 4. EFFECT OF NANO-BaTiO3 ON MECHANICAL AND ELECTRICAL PROPERTIES OF HDDA/TPA PHOTO-CURED POLYMER PREPARED BY DIGITAL LIGHT PROCESSOR RP MACHINE 4.1. INTRODUCTION 58 4.2. EXPERIMENTAL PROCEDURE 59 4.3. RESULTS AND DISCUSSION 60 4.3.1. DEGRADATION TEMPERATURE ANALYSIS 60 4.3.2. MORPHOLOGY ANALYSIS 62 4.3.3. MECHANICAL PROPERTIES 65 4.3.4. PERMITTIVITY AND RESISTIVITY 70 4.4. SUMMARY 79 Chapter 5. CONCLUSION 80 REFFERENCES 82 APPENDIX XV A.TENSILE STRENGTH AND MODULUS ELASTICITY CALCULATION XV B.MEASUREMENT SETUP AND CALCULATION FOR PERMITTIVITY AND RESISTIVITY XVII AUTHOR INTRODUCTION XIX

    [1]. Chiu, S. H., Wu, D. C., “Preparation and Physical Properties of Photopolymer/SiO2 Nano Composite for Rapid Prototyping System”, Journal of Applied Polymer Science, Vol. 107, pp. 3529-3534, 2007.
    [2]. Chiu, S. H., Sigit Tri W, Kun-Ting Chen, Pong, S. H., “Morphology and properties of a photopolymer/clay nanocomposite prepared by a rapid prototyping system”, Sci. Eng Compos Mater, Vol. 21, No.2, pp. 205-210, 2014.
    [3]. Chiu, S. H., Sigit Tri W, Kun-Ting Chen, Chiu-Yen Chen, Pong, S. H., “Mechanical and Thermal Properties of Photopolymer/CB (Carbon Black) Nanocomposite for Rapid Prototyping”, Rapid Prototyping Journal, In press.
    [4]. Cheng, W. T., Yeh, W.T., “Preparation and characterization of free radical photopolymer with carbon black nano-particle”, Journal of photopolymer science and technology, Vol. 19, pp. 685-698, 2006.
    [5]. Y. Yagci, Steffen, J., Nicolas, T. Turro, “Photoinitiated Polymerization: Advances, Challenges, and Opportunities”, Macromolecules, Vol. 43, pp. 6245–6260, 2010.
    [6]. Lavinia, M., Nicoleta, P., Smaranda, I., Adriana, P., and Gheorghe, “UV-Curable Nanocomposites Containing Zirconium Vinylphosphonate or Zirconia”, J. Appl. Polym. Sci., Vol. 119, pp. 1820-1826, 2011.
    [7]. Kwame, O., Schall, J., and Allan, C. G., “Photopolymerization Behavior of Thiol-Acrylate Monomer in Clay Nanocomposite”, Macromolecules, Vol. 42, pp. 3275-3274, 2009.
    [8]. Decker, C., Benfari, S., Keller, L., and Zahouily, K., “Synthesis of clay nanocomposite materials by light-induced crosslinking polymerization”, European Polym. J., Vol. 40, pp. 493-501, 2004.
    [9]. Fawn, M. Uhl., Webster, D. C., Davuluri, S. P., Wong, S.C., “UV curable epoxy acrylate–clay nanocomposites”, European Polym. J., Vol. 42, pp. 2596-2605, 2006.
    [10]. Decker, C., Keller, L., Zahouily, K., and Benfarhi, S., “Synthesis of nanocomposite polymers by UV-radiation curing”, J. Polymer, Vol. 46, pp. 6640–6648, 2005.
    [11]. Rao, B. S., Aruna, P., “Tetrafucntional acrylates based on Beta-Hydroxy alkyl amides as croslinkers for UV curable coating”, Progress in organic coatings, Vol. 56, pp. 297-303, 2006.
    [12]. Li Chungguang, Jue Cheng, Yu Jian, Wenkai Chang, Jun Nie, “Photopolymerization kinetics and thermal properties of DBSMA”, Journal of Applied Polymer Science, pp. 3418-3423, 2013.
    [13]. Cheah, C. M., Fuh, J. Y. H., Nee, A. Y. C., Lu L., “Mechanical characteristics of fiber-filled photo-polymer used in stereolithography”, Rapid Prototyping Journal, Vol. 5, pp. 112-119, 1999.
    [14]. Griffith, M. L., Halloran, J. W, “Freeform Fabrication of Ceramics via Stereolithography”, Journal of the American Ceramic Society, Vol. 79, pp. 2601-2608, 1996.
    [15]. Hinczewski, C., Corbel, S., Chartier, T, “Stereolithography for the fabrication of ceramic three- dimensional parts”, Rapid Prototyping Journal, 1998, Vol. 4, 104-111.
    [16]. Allan, C. G., and Kwame, O., “Chemical compatibility and reaction-induced exfoliation in photopolimerizable clay nanocomposite”, Macromolecules, Vol. 42, pp. 180-187, 2009.
    [17]. A. Ravve, “Linght-Associated Reactions of Synthetic Polymers”, Springer, ISBN-13:978-0387-31803-5, 2006.
    [18]. Chiu, S. H., Pong, S. H., Wu, D. C., Lin, C. H., “A Study of photomask correction method in area-forming rapid prototyping system”, Rapid Prototyping Journal, Vol. 14, No. 5, pp. 285-292, 2008.
    [19]. N. H. Tran, et al., “Dispersion of silicate nano-plates within poly (acrylic acid) and their interfacial interaction”, Science and Technology of Advanced Materials, Vol. 7, pp. 786-791, 2006.
    [20]. Akbari, B., et al., “Particle size characterization of nanoparticles-a practical approach”, Iranian Journal of Materials Science & Engineering, Vol. 8 No.2, pp.48-56, 2011.
    [21]. Jordan, J., Karl, I., Jacob, Rina Tannenbaum, Mohammed A., Sharaf, Iwona Jasiuk, “Experimental trends in polymer nanocomposites—a review”, Materials Science and Engineering, Vol. 393, pp. 1–11, 2005.
    [22]. J.S. Shelley, P.T., Mather, K.L., DeVries, “Reinforcement and environmental degradation of nylon-6/clay nanocomposites”, Polymer J, Vol. 42, pp. 5849-5858, 2001.
    [23]. Chi-Ming Chan, Jing-Shen Wu, Jian-Xiong Li, Ying-Kit Cheung, “Polypropylene/calcium carbonate nanocomposites”, Polymer J, Vol. 43, pp. 2981-2992, 2002.
    [24]. Ray, S. S., Okamoto M, “Polymer/layered silicate nanocomposites: a review from preparation to processing”, Prog. Polym. Sci., Vol. 28, pp. 1539–1641, 2003.
    [25]. Papaspyrides, C. D., S. Pavilidou, “A review on polymer–layered silicate nanocomposites”, Progress in Polymer Science, Vol. 33, pp. 1119-1198, 2008.
    [26]. Fang, Z., Baoxian Du, Zhenghong Guo, Ping'an Song, Hui Liu, Yu Wu, “Flame retardant mechanism of organo-bentonite in polypropylene”, Applied Clay Science, Vol. 45, pp. 178–184, 2009.
    [27]. Schmidt, H., “Nanoparticle by chemical synthesis,processing materials and innovative applications”, Appl. Organometal. Chem., Vol. 15, pp. 331–343, 2001.
    [28]. Sundararaj, U., Breuer, O., “Big Returns From Small Fibers: A Review of Polymer/Carbon Nanotube Composites”, Polymer Composite J., Vol. 25, No. 6, pp. 630-645,2004.
    [29]. Wypych, F., Satyanarayana, K.G., “Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties”, Journal of Colloid and Interface Science, Vol. 285, pp. 532–543, 2005.
    [30]. William Gacitua, E., Aldo Ballerini, A., Jinwen Zhang, “Polymer nanocomposite: Synthetic and Natural Fillers-A Review”, Maderas. Ciencia y tecnologia, Vol. 7, No. 3, pp. 159-178, 2005.
    [31]. Farzana Hussain, Mehdi Hojjati, Masami Okamoto, Rusell, E. Gorga, “Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview”, Journal of Composite Materials, Vol. 40, No. 17, pp. 1511-1575, 2006.
    [32]. Kojima Y. A., Okada, M., Kawasumi, A., Usuki, T., Kurauchi, and O. Kamigaito, “Novel Preferred Orientation in Injection-Molded Nylon 6-Clay Hybrid”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 33, pp. 1039-1045, 1995.
    [33]. Yang Cao, P. C. Irwin, Karim, Y., “The future of nanodielectric in the electrical power industry”, IEEE Transaction on dielectrics and electrical insulation, Vol. 11, No. 5, pp. 797-806, 2014.
    [34]. Matsukawa, K., Takashi Hamada, et al., “Preparation and dielectric property of photo-curable polysilsesquinoxane hybrids”, Journal of photopolymer science and technology, Vol. 21, pp. 319-320, 2008.
    [35]. Tuncer, E., et al., “Dielectric properties of polyvinyl alcohol filled with nanometer size barium titanate particles”, Annual report conference on electrical insulation and dielectric phenomena-IEEE, pp. 225-227, 2007
    [36]. Lewis, T. J., “Interfaces are the dominant feature of dielectrics at the nanometric level”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, pp. 739-753, 2004.
    [37]. Lewis, T. J., “A Model for Nano-composite Polymer Dielectrics under Electrical Stress”, International Conference on Solid Dielectrics - IEEE, pp. 11-14, 2007.
    [38]. Wong, C. P., Sun, Y., Zhang, Z., “Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites”, Polymer, Vol. 46, pp. 2297-2305, 2005.
    [39]. Tanaka, T., Kozaka, M., Fuse, N., Ohki, Y., “Proposal of a multi-core model for polymer nanocomposite dielectrics”, IEEE Dielect. El. In., Vol. 12, pp. 669-681, 2005.
    [40]. O’connor, K. A., J. Smith and R. D. Curry, “Dielectric Characterization of Polymer-Ceramic nanocomposite”, IEEE Journal., pp. 336-341, 2009.
    [41]. Zak, G., Sela, M. N., Yevko, V., Park, C. B., Benhabib B, “Layered-Manufacturing of Fiber-Reinforced Composites”, Journal of Manufacturing Science and Engineering, Vol. 121, pp. 448-455, 1999.
    [42]. Advani, S. G., Sozer, E. M. “Process modeling in composites manufacturing- Second Edition”, CRC Press, New York, 2010.
    [43]. Yusuf Yagci, Hakan Akat, Mehmet, A. T., Filip, D. P., “Synthesis and characterization of polymer/clay nanocomposite by intercalated chain transfer agent”, European Polymer Journal, Vol. 44, pp. 1949-1954, 2008.
    [44]. Syu, G. C., Jhang, L. D, “Nano Composite Material”, Wu-Nan Book Co. Ltd., Taipei, 2001
    [45]. Wang, C. H., “A Study on the Curing Behavior and Performance of Polyimide Blend with Polyester Acrylate”, National Taiwan University of Science and Technology, Taipei, 2003.
    [46]. Koo, J. H, An Overview of Nanoparticle, Polymer Nanocomposites, McGraw-Hill: New York, 2006
    [47]. Qi, H. J., Joyce, K., Boyce, M. C., “Stress–strain behavior of thermoplastic polyurethanes”, Mechanics of Materials, Vol. 37, pp. 817-839, 2005.
    [48]. Zhang, L., Wang, Y., Zhang, H., Wu, Y., Yang, J., “Structure and Properties of Strain-Induced Crystallization Rubber–Clay Nanocomposites by Co-coagulating the Rubber Latex and Clay Aqueous Suspension”, J. Appl. Polym. Sci., Vol. 96, pp.318-323, 2005.
    [49]. Allan, C. G., and Kim, S. K., “Photopolymerization behavior in nanocomposite formed with thiol-acrylate and polymerizable organoclays”, Journal of Polymer Science: Part A: Polymer chemistry, Vol. 49, pp. 465-475, 2011.
    [50]. Kausik Dana, Sarkar, M., Sankar, G. Banerjee, “Polypropylene-clay composite prepared from Indian bentonite”, Bull. Mater. Sci., Vol. 31, No. 1, pp. 23-28, 2008.
    [51]. Xie, W., Gao, Z., Liu, K., Pan, W.P., Richard, V., Hunter, D., Singh, A., “Thermal characterization of organically modifed montmorillonite”, Thermochimica Acta, pp. 339-350, 2001.
    [52]. Xie, W., Gao, Z., Liu, K., Pan, W. P., Hunter, D., Singh, A., Richard, V., “Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite”, J. Chem. Mater., Vol. 13, pp. 2979-2990, 2001.
    [53]. Wilkie, C. A., and Jang, B. N., “The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites”, Polymer, Vol. 46, pp. 3264-3274, 2005.
    [54]. Zheng, X., Wilkie, C. A., “Nanocomposites based on poly (E-caprolactone) (PCL)/clay hybrid: polystyrene, high impact polystyrene, ABS, polypropylene and polyethylene”, Polym. Deg. Stabl., Vol. 82, pp. 411-420, 2003.
    [55]. Fawn, M. U., Davuluri, S. P., Wong, S.C., Webster, D. C. “Organically modified montmorillonites in UV curable urethane acrylate films”, J. Polym. , Vol. 45, pp. 6175-6187, 2004.
    [56]. Mehrnoosh Atashfaraz, et al., “Ex-situ Surface Modification of BaTiO3 Nanoparticles Prepared by Hydrothermal Synthesis”, Proceedings of the World Congress on Engineering and Computer Science, San Francisco, 2008
    [57]. Peter barber, Harry, J., Ploehn, H. C., Loye, et al., “Polymer composite and nanocomposite dielectric materials for pulse power energy storage”, Journal of Materials, Vol. 2, pp. 1697-1733, 2009.
    [58]. Brosseau, C., Myroshnychenko, V., “Finite-element modeling method for the prediciton of the complex effective permittivity of two-phase random statistically isotropic heterostructures”, J. Appl. Phys., Vol. 97, pp. 044101-1 - 044101-14, 2005.
    [59]. Myroshnychenko, V., Brosseau, C., “Effective Complex Permittivity and Continuum Percolation Analysis of Two-phase Composite Media”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, No.4, pp. 1209-1222, 2009.
    [60]. Rao, Y., Qu, J., Marinis, T., Wong, C. P., “A Precise numerical prediction of the effective dielectric constant for polymer-ceramic composite based on effective-medium theory”, IEEE Trans. Comp. Pack. Tech, Vol. 23, No.4, pp. 680-683, 2000.
    [61]. Mahmud H. N. M. E., Kassim, A., Adzmi, F., “Polypyrrole–montmorillonite clay composites: An organic semiconductor”, Materials Science in Semiconductor Processing, Vol. 10, pp. 246–251, 2007.
    [62]. Hsieh, T. E., Ying, K. L., “Sintering behaviors and dielectric properties of nanocrystalline barium titanate”, Mater. Sci. Eng., Vol. 138, pp. 241-245, 2007.
    [63]. Carabineiro et al., “Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites”, Nanoscale Research Letters, Vol. 6. No. 302, pp. 1-5, 2011.
    [64]. Stojan Ristic, Aneta Prijic, Zoran Prijic, "Dependence of Static Dielectric Constant of Silicon on Resistivity at Room Temperature”, Serbian Journal of Electrical Engineering, Vol. 1, No.2, pp. 237-247, 2004.
    [65]. Qi Tan, Yang Cao, Patricia Irwin, “DC Breakdown in Polyetherimide Composites and Implication for Structural Engineering”, International Conference on Solid Dielectrics, pp. 411-414, 2007.
    [66]. Michael Alexandre, Philippe Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, Materials Science and Engineering, Vol. 28, pp. 1-63, 2000.
    [67]. He Yan, Antonio Facchetti, Tobin J. Mark, “Photopolymer-based dielectric materials and methods of preparation and use thereof”, US PATENT, US 7,981,989 B2, 2011.
    [68]. K. Pielichowski, A. Leszczynska, J. Njuguna, J.R. Banerjee, “Polymer/montmorillonite nanocomposites with improved thermal properties”, Thermochimia Acta, Vol. 454, pp. 1-22, 2007.

    QR CODE