簡易檢索 / 詳目顯示

研究生: Saravanan Adhimoorthy
Saravanan - Adhimoorthy
論文名稱: Characterization of rare earth elements containing ZnO nanocolumns
Characterization of rare earth elements containing ZnO nanocolumns
指導教授: 趙良君
Liang-Chiun Chao
口試委員: 葉秉慧
Ping-Hui Yeh
Chi-Shung Tang
Chi-Shung Tang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: ZnO nanowires
外文關鍵詞: ZnO nanowires
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

A novel synthesis and growth method achieving vertically aligned zinc oxide (ZnO) nanowires on silicon (Si) substrate is demonstrated. The growth direction of the ZnO nanowires is determined by the crystal structure of the ZnO buffer layer, which is formed by the ion beam sputtered method (IBSD). The vertically aligned ZnO nanowires on Si substrate are realized from the appropriately thick ZnO buffer layer by a vapor phase transport mechanism. In this process, the vertically aligned ZnO were prepared by the process of high purity ZnO powder is mixed with graphite powders, which are filled into the boat. The Si substrate was placed on the boat, the Si substrate and powder distance was 2mm. The boat was placed in a center of furnace at a high temperature of 1000°C.
Followed by prepared the rare earth elements such as Nd, Er, Pr contained ZnO nanowires, which has unique optical, electrical, and morphological properties be capable of doping with rare earth elements. Among the rare earth, Nd is one of the most widely used element for high power laser applications. The Nd doped lasers have recently been utilized in inertia confined fusion experiments. An intrinsic issue of Nd doped glass materials is the low thermal conductivity that usually leads to thermal degradation under high repetition rate high power laser operation. The undoped ZnO nanocolumns were soaking for 2 hours into neodymium acetate solution, erbium, and praseodymium solutions, followed by the sample were placed on the ceramic boat, which is placed at the centre of a horizontal quartz tube furnace boat and annealed at 900°C for 8 hrs. The rare earth elements containing ZnO nanocolumns were studied by field-emission electron microscopy (FE-SEM), X-ray diffraction (XRD), XPS and photoluminescence (PL) study.


A novel synthesis and growth method achieving vertically aligned zinc oxide (ZnO) nanowires on silicon (Si) substrate is demonstrated. The growth direction of the ZnO nanowires is determined by the crystal structure of the ZnO buffer layer, which is formed by the ion beam sputtered method (IBSD). The vertically aligned ZnO nanowires on Si substrate are realized from the appropriately thick ZnO buffer layer by a vapor phase transport mechanism. In this process, the vertically aligned ZnO were prepared by the process of high purity ZnO powder is mixed with graphite powders, which are filled into the boat. The Si substrate was placed on the boat, the Si substrate and powder distance was 2mm. The boat was placed in a center of furnace at a high temperature of 1000°C.
Followed by prepared the rare earth elements such as Nd, Er, Pr contained ZnO nanowires, which has unique optical, electrical, and morphological properties be capable of doping with rare earth elements. Among the rare earth, Nd is one of the most widely used element for high power laser applications. The Nd doped lasers have recently been utilized in inertia confined fusion experiments. An intrinsic issue of Nd doped glass materials is the low thermal conductivity that usually leads to thermal degradation under high repetition rate high power laser operation. The undoped ZnO nanocolumns were soaking for 2 hours into neodymium acetate solution, erbium, and praseodymium solutions, followed by the sample were placed on the ceramic boat, which is placed at the centre of a horizontal quartz tube furnace boat and annealed at 900°C for 8 hrs. The rare earth elements containing ZnO nanocolumns were studied by field-emission electron microscopy (FE-SEM), X-ray diffraction (XRD), XPS and photoluminescence (PL) study.

TABLE OF CONTENTS Chapter 1........................................................................................................................................I Abstract……………………………………………………………………………………….…...I Acknowledgements……………………………………………………………………………….II Table of content …………………………………………………………………………………III List of figures…………………………………………………………………………………..…V List of Tables…………………………………………………………………………………..VIII Introduction and motivation.............................................................................................................1 Chapter 2 ......................................................................................................................................3 2.1: Literature review and Technical background………………………………………………...3 2.2: Nanowires Synthesis Methods………..……………………………….….………………….3 a) Thermal Chemical vapor deposition………………………………………………………4 b) Vapor-Liquid-Solid……………………………………………………..…………………5 c) Vapor-Solid…………………………………………………………..……………………7 d) Hydrothermal…………………………………………………………..………………….9 e) Vapor-Phase Transport…………………………………………………………………..10 Chapter 3.....................................................................................................................................12 3.1: Basic properties of ZnO..........................................................................................................12 3.2: The photoluminescence properties of ZnO....................................................... …...……….13 3.3: Physical and properties of ZnO..............................................................................................15 3.4: Electrical properties of ZnO.……………………………………………………………….16 v 3.5: Dimensional structure properties of the zinc oxide ………...………………………............18 3.6: Application of ZnO nanowires……………..……………………………………………….22 Chapter 4.....................................................................................................................................24 Experimental techniques, synthesis of ZnO nanostructures……..................................................24 4.1: Preparation of ZnO Nano flower............................................................................................24 4.2: Preparation of ZnO seed layer using Ion beam spattering method.........................................25 4.2: Preparation of ZnO Vertically aligned nanowires................................................…………..25 4.3: Preparation of Nd, Er, Pr containing ZnO Nanowires………………………………….…..27 4.4: Experimental equipment and processes………………….………………….........................30 Chapter 5 ...................................................................................................................................36 Results and discussions………………………………....…..........................................................36 5.1: Scanning electron microscopy ...............................................................................................36 5.2: X-ray diffraction....................................................................................................................42 5.3: Photoluminescence................................................................................................................46 5.4: XPS……………….................................................................................................................51 5.5: EDAX……………………………………………………………………………………....53 Chapter 6 Conclusion and outlook.................................................................................................................56 References..................................................... ……………………………………………….….57

[1] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, pp. 1635-1637, 2003.
[2] Y. Ding, P. X. Gao, and Z. L. Wang, “Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts : A Case of Sn / ZnO,” J. Am. Chem. Soc., Vol. 126, pp. 2066-2072, 2004.
[3] C. Y. Lee, T. Y. Tseng, S. Y. Li, and P. Lin, “Growth of zinc oxide nanowires on silicon (100),” Tamkang Journal of Science and Engineering, Vol. 6, pp. 127-132, 2003.
[4] H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. and Eng. A, Vol. 393, pp. 80-82, 2005.
[5] L. C. Chao, P. C. Chiang, S. H. Yang, “Erbium-Doped ZnO Prepared by Vapor-Phase Transport,” Japanese Journal of Applied Physics, Vol. 45, pp. L938–L940, 2006.
[6] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” App. Phys. Lett., Vol. 84, pp. 3654-3456, 2004.
[7] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., Vol. 79, pp. 7983-7990, 1996.
[8] W. K. Hong, B. J. Kim, T. W. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E. A. Stach, and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloids Surf., Vol. 313-314, pp. 378-382, 2008.
[9] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo,
58
and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., Vol. 7, pp. 1003-1009, 2007.
[10] B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” J. Electrochem. Soc., Vol. 148, pp. 110-113, 2001.
[11] H. Wan, B. B. Li, and H. E. Ruda, “Influence of growth conditions on morpholopgy of ZnO nanostructures in CVD process,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Vol. 143, pp. 1110-1115, 2010.
[12] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, “Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties,” J. Cryst. Growth, Vol. 234, pp. 171-175, 2002.
[13] Wikipedia “SEM” http://en.wikipedia.org/wiki/Scanning_electron_microscope.
[14] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” App. Phys. Lett., Vol. 78, pp. 2285-2287, 2001.
[15] Wikipedia “EDAX” (http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy)
[16] Wikipedia “XPS” http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy.
[17] U. Lampe and J. Muller, “Thin-film oxygen sensors made of reactively sputtered ZnO,” Sens. Actuators B, Vol. 18, pp. 269-284, 1989.
[18] L.C. Chao, P.C. Chiang, S.H. Yang, J.W. Huang, C.C. Liau, J.S. Chen, C.Y. Su, Appl. Phys. Lett. Vol, 88, pp. 251111, 2006.
[19] C. G. Van De Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
59
[20] L. C. Chao, J.W. Huang, C.W. Chang, Annealing effects on the properties of Nd containing ZnO nanoparticles prepared by sol–gel process, Cryst. Res. Techno, Vol, 47, pp. 100245, 2012.
[21] T. L. Chou, W. Y. Wu, and J. M. Ting, “Sputter deposited ZnO nanowires/thin film structures on glass substrate,” Thin Solid Films, Vol. 518, pp. 1553-1556, 2009.
[22] C. Y. Zhao, X. H. Wang, J. Y. Zhang, Z. G. Ju, C. X. Shan, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, Vol. 519, pp. 1976-1979, 2011.
[23] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” App. Phys. Lett., Vol. 78, pp. 2285-2287, 2001.
[24] S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn,” App. Phys. Lett., Vol. 75, pp. 2761-2763, 1999.
[25] W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” App. Phys. Lett., Vol. 80, pp.4232-4234, 2006.
[26] S. A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., Vol. 84, pp. 2287-2294, 1998.
[27] H. Zhu, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet electroluminescence from mgzno-based heterojunction light-emitting diodes,” J. Phys. Chem. C, Vol. 113, pp. 2980-2982, 2009.
60
[28] S. Basu and A. Dutta, “Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application,” Sens. Actuators B, Vol. 22, pp. 83-87, 1994.
[29] F. Chaabouni, M. Abaab, and B. Rezig, “Metrological characteristics of ZnO oxygen sensor at room temperature,” Sens. Actuators B, Vol. 100, pp. 200-204, 2004.
[30] U. Lampe and J. Muller, “Thin-film oxygen sensors made of reactively sputtered ZnO,” Sens. Actuators B, Vol. 18, pp. 269-284, 1989.
[31] H. Nanto, T. Minami, and S. Takata, “Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity,” J. Appl. Phys., Vol. 60, pp. 482-484, 1986.
[32] P. P. Sahay, S. Tewari, S. Jha, and M. Shamsuddin, “Sprayed ZnO thin films for ethanol sensors,” J. Mater. Sci., Vol. 40, pp. 4791-4793, 2005.
[33] R. Jaramillo and S. Ramanathan, “Kelvin force microscopy studies of work function of transparent conducting ZnO:Al electrodes synthesized under varying oxygen pressures,” Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 602-605, 2011.
[34] J. Yi, J. M. Lee, and W. I. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators, B, Vol. 155, pp. 264-269, 2011.
[35] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” App. Phys. Lett., Vol. 86, pp. 123117-1-123117-3, 2005.
[36] S. Dhara and P. Giri, “Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Res. Lett., Vol. 6, pp. 504-1-504-8, 2011.
[37] S. Y. Li, C. Y. Lee and T. Y. Tseng, “Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process,” J. Cryst. Growth, Vol. 247, pp. 357-262, 2003.
61
[38] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, Vol. 292, pp. 1897-1899, 2001.
[39] S. Li, X. Zhang, B. Yan, and T. Yu, “Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method,” Nanotechnology, Vol. 20, pp. 495604-1-495604-9, 2009.
[40] J. B. K. Law, C. B. Boothroyd, and J. T. L. Thong, “Site-specific growth of ZnO nanowires from patterned Zn via compatible semiconductor processing,” J. Cryst. Growth, Vol. 310, pp. 2485-2492, 2008.
[41] H. J. Fan, R. Scholz, F. M. Kolb, and M. Zacharias, “Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals,” App. Phys. Lett., Vol. 85, pp. 4142-4144, 2004.
[42] T. W. Kim, T. Kawazoe, S. Yamazaki, M. Ohtsu, and T. Sekiguchi, “Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires,” App. Phys. Lett., Vol. 84, pp. 3358-3360, 2004.
[43] S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen, and E. I. Kauppinen, “Mechanistic investigation of ZnO nanowire growth,” Appl. Phys. Lett., Vol. 95, pp. 183114, 2009.
[44] A. M. B. Gon alves, L. C. Campos, A. S. Ferlauto, and R. G. Lacerda, “On the growth and electrical characterization of CuO nanowires by thermal oxidation,” J. Appl. Phys., Vol. 106, pp. 034303, 2009.
[45] X. Y. Kong, Y. Ding, and Z. L. Wang, “Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes,” J. Phys. Chem. B, Vol. 108, pp. 570-574, 2004.
62
[46] C. Y. Liu, B. P. Zhang, Z. W. Lu, N. T. Binh, K. Wakatsuki, Y. Segawa, and R. Mu, “Fabrication and characterization of ZnO film based UV photodetector,” J. Mater Sci.Mater. Electron., Vol. 20, pp. 197-201, 2009.
[47] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh, and S. P. Chang, “A lateral ZnO nanowires photo detector prepared on glass substrate,” J. Electrochemical Soc., Vol. 157, pp. K30-K33, 2010.
[48] F. Yakuphanoglu, Y. Caglar, S. Ilican, and M. Caglar, “The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films,” Physica B, Vol. 394, pp. 86-92, 2007.
[49] H. Yan, J. Hou, Z. Fu, B. Yang, P. Yang, K. Liu, M. Wen, Y. Chen, S. Fu, and F. Li, “Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation,” Materials Research Bulletin, Vol. 44, pp. 1954-1958, 2009.
[50] L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C, Vol. 113, pp. 21572-21576, 2009.

無法下載圖示 全文公開日期 2018/01/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE