簡易檢索 / 詳目顯示

研究生: Van-Quy Le
Van-Quy Le
論文名稱: 三相四階飛馳電容式功率因數修正器之觀測器控制
Observer-Based Control of Three-Phase Four-Level Flying Capacitor Power Factor Corrector
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉宇晨
‪Yu-Chen Liu‬
張佑丞
‪Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 92
中文關鍵詞: 固態變壓器多階飛馳電容功率因數修正碳化矽高壓觀測器控制鎖相迴路
外文關鍵詞: Solid State Transformer, Flying Capacitor Multi-level, Power Factor Correction, Silicon Carbide, High Voltage, Observer-Based Control, Phase Locked Loop
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著再生能源發電的增加,導致電網在不同電壓和不同頻率時的控制複雜性增加。為了克服這些問題,使用固態變壓器 (SST) 有助於處理電力系統的靈活性和可靠性。本論文重點研究用於SST應用的三相四階飛馳電容式功率因數修正器的控制部分,以實現高性能、強健性和效率。研究和設計了三個主要控制主題:控制器設計、電網同步和多階調變方法。本文基於小信號模型,設計了傳統的PI控制器串級環控制,並透過模擬和實驗進行驗證。為了提高系統的性能,在外部電壓控制迴路中採用了基於觀測器的控制方法。基於觀測器的控制有以下幾個主要特點:確保直流輸出電壓的零穩態誤差,它提高了對輸出干擾的動態響應和系統強健性;只有一個控制參數用於調整比例控制器,便於實際工程師分析和設計。由於準確性和一致的同步機制對於併網應用至關重要,因此對於應用在不平衡電網條件下,性能優異的 DDSRF-PLL 可提高系統的整體性能。本文分析了 SVPWM、CBPWM 和 DPSPWM調變方法,在多階式轉換器應用鍾,CBPWM 比 SVPWM 更容易實現;而DPSPWM 結合了 CBPWM 和 SVPWM 的優點:控制簡單且電感電流漣波頻率為切換頻率之兩倍,同時達到飛馳電容上的自然電壓平衡。此外,DPSPWM通過動態相移載波,改善了PSPWM由於三相開關節點電壓不對齊引起的大電流漣波問題,使三相開關節點電壓中心對齊。在設計和測試原型機之前,採用PLECS 對所有設計和控制算法進行了數值模擬驗證,最後實際採用 DSP TMS320F28379D驗證了控制算法。


    New energy generation and storage resources increase, leading to the complexity of the electrical network in terms of different voltages (DC and AC) with different frequencies. To overcome these problems, using a Solid State Transformer (SST) aided in dealing with the flexibility and reliability of the power system. This thesis focuses on the control part of three-phase four-level FCML PFC for SST application to achieve high performance, robustness, and efficiency. Three main control topics are studied and designed: controller design, grid synchronization, and multi-level PWM methods. The robust and efficient control of the PFC is crucial to regulate the constant output voltage and sinusoidal input current. Based on the small-signal model, the conventional cascade loop control with PI controllers is designed and verified in both simulation and experiment. The observer-based control is applied in the outer voltage control loop to enhance the system's performance. Several key features of observer-based control are listed as follows: it makes sure the zero steady-state error on DC output voltage; it improves the dynamic response and system robustness against the output disturbance; only one control parameter is used to tune the proportional controller; simple to analysis and design for practical engineers. Because grid synchronization is necessary for the operation of PFC, accuracy and consistent synchronization mechanism are crucial. Therefore, the DDSRF-PLL outperforming in unbalanced grid conditions improves the system's total performance. The PWM methods for two-level and multi-level converters are analyzed with SVPWM, CBPWM, and DPSPWM. CBPWM is more accessible to implement than SVPWM for multi-level converter applications. The DPSPWM combines both advantages of CBPWM and SVPWM: the simplicity and the increase of the inductor current ripple frequency two times while still keeping the natural voltage balancing on the flying capacitor. Furthermore, DPSPWM improves the high current ripple issue of PSPWM, caused by three-phase unaligned switching node voltages, by dynamic phase shift carrier wave to make the switching node voltage of three-phase are center aligned. All design and control algorithms are verified in numerical simulation by PLECS before designing and testing the hardware prototype. The implementation of the control algorithms on hardware is verified on high-performance DSP TMS320F28379D.

    摘要 i Abstract ii Acknowledgment iii Contents iv List of Figures vi List of Tables ix List of Abbreviations x Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Thesis Scope 4 1.3 Thesis Outline 5 Chapter 2 FCML Converter Analysis 6 2.1 Boost Converter 6 2.2 FCML Boost converter 7 Chapter 3 Three-Phase Pulse Width Modulation 18 3.1 Space Vector Modulation 19 3.1.1 Two-level Space Vector Modulation 19 3.1.2 Multi-level Space Vector Modulation 28 3.2 Carrier-Based Pulse Width Modulation 38 3.2.1 Two-level Carrier-Based Pulse Width Modulation 38 3.2.2 Three-level Carrier-based Pulse Width Modulation 40 3.3 Dynamic Phase Shift Modulation 43 Chapter 4 Control and Software Design 47 4.1 Small-signal Model of Three-Phase PFC 47 4.2 Controller Design 53 4.3 Observer-Based Control 65 4.3.1 Output Voltage Model 65 4.3.2 Enhanced State Observer Design 66 4.3.3 Frequency Domain Analysis for ESO 68 4.4 Three-phase Phase-Locked Loop 70 4.4.1 Synchronous Reference Frame PLL 70 4.4.2 Decoupled Double Synchronous Reference Frame PLL 72 4.5 Software Design 77 Chapter 5 Experimental Setup and Results 80 5.1 Experimental Setup 80 5.2 Experimental Results 81 Chapter 6 Summary and Future Work 87 6.1 Summary 87 6.2 Future Work 88 Bibliographies 89

    [1] M. Yilmaz and P. T. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151–2169, May 2013, doi: 10.1109/TPEL.2012.2212917.
    [2] Z. Liu, B. Li, F. C. Lee, and Q. Li, “High-Efficiency High-Density Critical Mode Rectifier/Inverter for WBG-Device-Based On-Board Charger,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9114–9123, Nov. 2017, doi: 10.1109/TIE.2017.2716873.
    [3] “IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,” IEEE Std 1547-2003, pp. 1–28, Jul. 2003, doi: 10.1109/IEEESTD.2003.94285.
    [4] “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE Std 519-2014 Revis. IEEE Std 519-1992, pp. 1–29, Jun. 2014, doi: 10.1109/IEEESTD.2014.6826459.
    [5] F. Merahi and E. M. Berkouk, “Back-to-back five-level converters for wind energy conversion system with DC-bus imbalance minimization,” Renew. Energy, vol. 60, pp. 137–149, Dec. 2013, doi: 10.1016/j.renene.2013.05.001.
    [6] S. Mekhilef and M. N. Abdul Kadir, “Novel Vector Control Method for Three-Stage Hybrid Cascaded Multilevel Inverter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1339–1349, Apr. 2011, doi: 10.1109/TIE.2010.2049716.
    [7] X. Wang, J. Liu, S. Ouyang, T. Xu, F. Meng, and S. Song, “Control and Experiment of an H-Bridge-Based Three-Phase Three-Stage Modular Power Electronic Transformer,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2002–2011, Mar. 2016, doi: 10.1109/TPEL.2015.2434420.
    [8] A. M. Y. M. Ghias, M. Ciobotaru, V. G. Agelidis, and J. Pou, “Solid state transformer based on the flying capacitor multilevel converter for intelligent power management,” in IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica), Jul. 2012, pp. 1–7. doi: 10.1109/PowerAfrica.2012.6498659.
    [9] Y. Li, Y. Li, J. Han, Y. Tan, Y. Cai, and Y. Jiang, “A MMC-SST based power quality improvement method for the medium and high voltage distribution network,” in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Jun. 2016, pp. 1–5. doi: 10.1109/EEEIC.2016.7555444.
    [10] F. Z. Peng, W. Qian, and D. Cao, “Recent advances in multilevel converter/inverter topologies and applications,” in The 2010 International Power Electronics Conference - ECCE ASIA -, Jun. 2010, pp. 492–501. doi: 10.1109/IPEC.2010.5544625.
    [11] J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002, doi: 10.1109/TIE.2002.801052.
    [12] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of Control and Grid Synchronization for Distributed Power Generation Systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006, doi: 10.1109/TIE.2006.881997.
    [13] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of Current Controllers for Distributed Power Generation Systems,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 654–664, Mar. 2009, doi: 10.1109/TPEL.2009.2012527.
    [14] A. Riccobono and E. Santi, “Positive Feed-Forward control of three-phase voltage source inverter for DC input bus stabilization,” in 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2011, pp. 741–748. doi: 10.1109/APEC.2011.5744679.
    [15] M. Davari and Y. A.-R. I. Mohamed, “Robust Multi-Objective Control of VSC-Based DC-Voltage Power Port in Hybrid AC/DC Multi-Terminal Micro-Grids,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1597–1612, Sep. 2013, doi: 10.1109/TSG.2013.2249541.
    [16] M. Davari and Y. A.-R. I. Mohamed, “Dynamics and Robust Control of a Grid-Connected VSC in Multiterminal DC Grids Considering the Instantaneous Power of DC- and AC-Side Filters and DC Grid Uncertainty,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1942–1958, Mar. 2016, doi: 10.1109/TPEL.2015.2439645.
    [17] M. Davari and Y. A.-R. I. Mohamed, “Variable-Structure-Based Nonlinear Control for the Master VSC in DC-Energy-Pool Multiterminal Grids,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 6196–6213, Nov. 2014, doi: 10.1109/TPEL.2014.2300111.
    [18] C. Wang, X. Li, L. Guo, and Y. W. Li, “A Nonlinear-Disturbance-Observer-Based DC-Bus Voltage Control for a Hybrid AC/DC Microgrid,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 6162–6177, Nov. 2014, doi: 10.1109/TPEL.2013.2297376.
    [19] S.-C. Kim, T. H. Nguyen, D.-C. Lee, K.-B. Lee, and J.-M. Kim, “Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters,” J. Power Electron., vol. 14, no. 4, pp. 695–703, 2014, doi: 10.6113/JPE.2014.14.4.695.
    [20] S. Dadras and H. R. Momeni, “Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference, Dec. 2011, pp. 6925–6930. doi: 10.1109/CDC.2011.6161100.
    [21] J. Liu, S. Vazquez, L. Wu, A. Marquez, H. Gao, and L. G. Franquelo, “Extended State Observer-Based Sliding-Mode Control for Three-Phase Power Converters,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 22–31, Jan. 2017, doi: 10.1109/TIE.2016.2610400.
    [22] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-Phase PLLs: A Review of Recent Advances,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1894–1907, Mar. 2017, doi: 10.1109/TPEL.2016.2565642.
    [23] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Single-Phase PLLs: A Review of Recent Advances,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9013–9030, Dec. 2017, doi: 10.1109/TPEL.2017.2653861.
    [24] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled Double Synchronous Reference Frame PLL for Power Converters Control,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 584–592, Mar. 2007, doi: 10.1109/TPEL.2006.890000.
    [25] F. Sevi̇lmi̇ş and H. Karaca, “Performance analysis of SRF-PLL and DDSRF-PLL algorithms for grid interactive inverters,” Int. Adv. Res. Eng. J., vol. 3, no. 2, Art. no. 2, Aug. 2019, doi: 10.35860/iarej.412250.
    [26] A. K. Gupta and A. M. Khambadkone, “A Space Vector PWM Scheme for Multilevel Inverters Based on Two-Level Space Vector PWM,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1631–1639, Oct. 2006, doi: 10.1109/TIE.2006.881989.
    [27] Ó. López et al., “Carrier-Based PWM Equivalent to Multilevel Multiphase Space Vector PWM Techniques,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5220–5231, Jul. 2020, doi: 10.1109/TIE.2019.2934029.
    [28] X. Shi, Z. Wang, L. M. Tolbert, and F. Wang, “A comparison of phase disposition and phase shift PWM strategies for modular multilevel converters,” in 2013 IEEE Energy Conversion Congress and Exposition, Sep. 2013, pp. 4089–4096. doi: 10.1109/ECCE.2013.6647244.
    [29] B. P. McGrath and D. G. Holmes, “A comparison of multicarrier PWM strategies for cascaded and neutral point clamped multilevel inverters,” in 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018), Jun. 2000, vol. 2, pp. 674–679 vol.2. doi: 10.1109/PESC.2000.879898.
    [30] Y.-H. Lee, D.-H. Kim, and D.-S. Hyun, “Carrier based SVPWM method for multi-level system with reduced HDF [harmonic distortion factor],” in Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), Oct. 2000, vol. 3, pp. 1996–2003 vol.3. doi: 10.1109/IAS.2000.882151.
    [31] S. P. Rohitkumar and M. T. Shah, “Simulation analysis of voltage balancing scheme using multicarrier techniques for three phase three-level Flying-Capacitor (FC) front-end converter,” in 2017 Nirma University International Conference on Engineering (NUiCONE), Nov. 2017, pp. 1–6. doi: 10.1109/NUICONE.2017.8325608.
    [32] Y.-L. Syu, Z. Liao, P. Assem, D. Chou, and R. C. N. Pilawa-Podgurski, “Phase-Shifted PWM with Dynamic Phase Shift Control and Zero Sequence Injection to Minimize Inductor Current Ripple in Three-Phase Flying Capacitor Multilevel Converters,” in 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Nov. 2020, pp. 1–7. doi: 10.1109/COMPEL49091.2020.9265783.
    [33] “奉啓元,三相四階飛馳電容功率因數修正器設計與研製 ,國立臺灣科技大學電子工程系碩士論文 2022年。.”
    [34] B. M. Hasaneen and A. A. Elbaset Mohammed, “Design and simulation of DC/DC boost converter,” in 2008 12th International Middle-East Power System Conference, Mar. 2008, pp. 335–340. doi: 10.1109/MEPCON.2008.4562340.
    [35] R. Basak, P. Nishita, Z. Elias, and S. S, “High gain Boost Converter with reduced switching stress,” in 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Apr. 2015, pp. 0393–0399. doi: 10.1109/ICCPEIC.2015.7259490.
    [36] B. P. McGrath and D. G. Holmes, “Natural Capacitor Voltage Balancing for a Flying Capacitor Converter Induction Motor Drive,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1554–1561, Jun. 2009, doi: 10.1109/TPEL.2009.2016567.
    [37] B. P. McGrath and D. G. Holmes, “Analytical Determination of the Capacitor Voltage Balancing Dynamics for Three-Phase Flying Capacitor Converters,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1425–1433, Jul. 2009, doi: 10.1109/TIA.2009.2023480.
    [38] Y. Lei et al., “A 2-kW Single-Phase Seven-Level Flying Capacitor Multilevel Inverter With an Active Energy Buffer,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8570–8581, Nov. 2017, doi: 10.1109/TPEL.2017.2650140.
    [39] Z. Liao, N. C. Brooks, Z. Ye, and R. C. N. Pilawa-Podgurski, “A High Power Density Power Factor Correction Converter with a Multilevel Boost Front-End and a Series-Stacked Energy Decoupling Buffer,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2018, pp. 7229–7235. doi: 10.1109/ECCE.2018.8557924.
    [40] Z. Liao, D. Chou, K. Fernandez, Y.-L. Syu, and R. C. N. Pilawa-Podgurski, “Architecture and Control of An Interleaved 6-Level Bidirectional Converter With an Active Energy Buffer for Level-II Electric Vehicle Charging,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Oct. 2020, pp. 4137–4142. doi: 10.1109/ECCE44975.2020.9236108.
    [41] T. A. Meynard and H. Foch, “Multi-level conversion: high voltage choppers and voltage-source inverters,” in PESC ’92 Record. 23rd Annual IEEE Power Electronics Specialists Conference, Jun. 1992, pp. 397–403 vol.1. doi: 10.1109/PESC.1992.254717.
    [42] M. G. Sayed, O. Abdel-Rahim, and M. Orabi, “Comparative Study to Investigate the Effect of Five VS Seven Segment Modulation Sequence on the Waveform Distortion Resulted by the Overlap Time in Current Source Inverter,” in 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Feb. 2019, pp. 576–580. doi: 10.1109/ITCE.2019.8646346.
    [43] C. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. Kirtley, “A Geometric Interpretation of Reference Frames and Transformations: dq0, Clarke, and Park,” IEEE Trans. Energy Convers., vol. 34, no. 4, pp. 2070–2083, Dec. 2019, doi: 10.1109/TEC.2019.2941175.
    [44] B. Wu and M. Narimani, High-Power Converters and AC Drives, 2nd ed. Wiley, 2017.
    [45] J.-H. Suh, C.-H. Choi, and D.-S. Hyun, “A new simplified space-vector PWM method for three-level inverters,” in APEC ’99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285), Mar. 1999, vol. 1, pp. 515–520 vol.1. doi: 10.1109/APEC.1999.749730.
    [46] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich, and J. Pou, “Space Vector Modulation for Vienna-Type Rectifiers Based on the Equivalence between Two- and Three-Level Converters: A Carrier-Based Implementation,” in 2007 IEEE Power Electronics Specialists Conference, Jun. 2007, pp. 2861–2867. doi: 10.1109/PESC.2007.4342473.
    [47] O. Dordevic, M. Jones, and E. Levi, “A Comparison of Carrier-Based and Space Vector PWM Techniques for Three-Level Five-Phase Voltage Source Inverters,” IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 609–619, May 2013, doi: 10.1109/TII.2012.2220553.
    [48] L. Huber, M. Kumar, and M. M. Jovanović, “Implementation and performance comparison of five DSP-based control methods for three-phase six-switch boost PFC rectifier,” in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2015, pp. 101–108. doi: 10.1109/APEC.2015.7104338.
    [49] T. K. Hassan, “A repetitive-PI Current Controller for Boost Single Phase PFC Converters,” Energy Power Eng., vol. 3, no. 2, Art. no. 2, May 2011, doi: 10.4236/epe.2011.32010.
    [50] J. Lu, S. Golestan, M. Savaghebi, J. C. Vasquez, J. M. Guerrero, and A. Marzabal, “An Enhanced State Observer for DC-Link Voltage Control of Three-Phase AC/DC Converters,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 936–942, Feb. 2018, doi: 10.1109/TPEL.2017.2726110.

    無法下載圖示 全文公開日期 2025/09/20 (校內網路)
    全文公開日期 2026/09/20 (校外網路)
    全文公開日期 2026/09/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE