簡易檢索 / 詳目顯示

研究生: 陳廷維
TING-WEI Chen
論文名稱: 貫穿差排對4H-SiC功率元件漏電效應之探討
Effects of the threading dislocations on the leakage current of 4H-SiC power devices
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 黃智方
Chih-Fang Huang
李坤彥
Kung-Yen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 碳化矽貫穿差排缺陷蕭特基二極體金氧半場效電晶體漏電
外文關鍵詞: SiC, Threading dislocations, Schottky barrier diode, Metal-oxide-semiconductor field-effect transistor, leakage current
相關次數: 點閱:310下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對碳化矽磊晶層中普遍存在的貫穿差排缺陷對功率元件漏電流的影響進行探討,透過對兩種常見的功率元件-蕭特基二極體(SBD)與金氧半場效電晶體(MOSFET)做為測試對象,以數量級超過數十至百顆的元件單位,追跡元件電性的差異與磊晶層內缺陷密度之間的關聯性。
    首先在SBD的實驗中,我們發現貫穿刃差排(TED)相較於貫穿螺旋差排(TSD)對於元件在軟擊穿區域的漏電影響來得大。我們認為與擊穿厚度達5.5微米的碳化矽磊晶層成長方向平行存在之TED具有較TSD略小之功函數,造成在金半接面處能帶彎曲較大導致有利電子的穿隧,應可說明此漏電現象的差異。相對的,在MOSFET的分析實驗中卻發現,TSD對於源極到汲極的崩潰電壓(VB)顯現較明顯之不良影響。可能的原因為磊晶層表面TSD所誘發的奈米凹坑較TED寬且深而累積較高濃度的載子;或是因為在淺層離子佈植時於TSD處較易造成離子衝穿,而導致較易漏電的現象發生。


    This study focused on investigating the impacts of the threading dislocations existing in the silicon carbide (SiC) epitaxial layers, on the leakage current of two kinds of power devices: Schottky barrier diode (SBD) and Metal-Oxide-Semiconductor-Field-Effect Transistor (MOSFET). The correlation between the electrical property differences of the device components and the defect density in the epitaxial layers was traced statistically according to a component units in the order of more than ten to a hundred of magnitude.
    First of all, we found that threading edge dislocation (TED) showed a greater impact on the leakage current of the SBD in the soft breakdown regime than threading screw dislocation (TSD). This phenomenon is most plausibly related to the difference in surface potential between TED and TSD, both existing in the SiC epitaxial layer with a breakdown thickenss of 5.5 m. That is, TED site exhibited a smaller work function than TSD, resulting in a greater band bending at the junction area and therefore favorable for electron tunneling.
    By contrast, TSD showed more adverse effects on the breakdown voltage (VB) of the source to drain rather than TED with respect to MOSFET. The wider and deeper pits structure induced by the TSD on the surface of the epitaxial layer may be responsible to the lowing of VB because of the more accumulated carriers at TSD site. In addition, in the process of ion implantation process to make p+ region for MOSFETs, ion punching through may easily occur at the TSD, resulting in more leakage current.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 V 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 碳化矽結構 4 2.2 碳化矽材料特性 7 2.3 碳化矽缺陷 9 2.3.1 碳化矽表面形貌缺陷與晶體缺陷 11 2.4 金屬氧化物半導體場效電晶體( MOSFETs) 12 2.4.1 金氧半二極體 12 2.4.2 金屬氧化物半導體場效電晶體(MOSFET) 17 2.4.3 金屬氧化物半導體場效電晶體(MOSFET)電流與電壓關係 19 2.5 碳化矽蕭特基二極體(Schottky barrier diode, SBD) 21 2.6 碳化矽晶片缺陷對元件特性之影響 24 第三章 實驗設備與相關流程 26 3.1 實驗流程大綱 26 3.2 實驗材料 28 3.2.1 碳化矽金屬氧化物半導體場效電晶體(4H-SiC MOSFET ) 30 3.3 碳化矽金氧半場效電晶體表面金屬移除 32 3.4 實驗設備 34 3.4.1 熱電偶 34 3.4.2 升降裝置 34 3.4.3 乾鍋、載台與高溫爐防腐蝕 35 3.5 分析儀器 37 3.5.1 微分干涉金相顯微鏡(Differential interference contrast microscope, DIC, ) 37 3.5.2 原子力顯微鏡(Atomic Force Microscope, AFM) 38 3.5.3 電壓電流量測 40 3.5.4 掃描式電子顯微鏡 42 第四章 結果與討論 43 4.1 碳化矽缺陷對蕭特基二極體漏電行為之影響 44 4.2 碳化矽缺陷4H-SiC MOSFET漏行為之影響 51 4.3 碳化矽結晶缺陷觀察與統計整理 55 4.4 碳化矽磊晶層的貫穿差排缺陷對4H-SiC MOSFET元件電性的影響 59 第五章 總結論 66 第六章 參考資料 68  

    1. H. Matsunami and T. Kimoto, Mater. Sci. Eng. R. 20, 125(1997).
    2. M. K. Das, J. J. Sumakeris, B. A. Hull, J. Richmond, S. Krishnaswami, and A. R. Powell, Mater. Sci. Forum 483, 965 (2005).
    3. K. Vassilevski, I. P. Nikitina, N. G. Wright, A. B. Horsfall A. G. O’Neill, and C. M. Johnson, Microelectronic Eng. 83, 150 (2006).
    4. M. Benamara, X. Zhang, and M. Skowronski, Appl. Phys. Lett., 86, 021905(2005).
    5. G. Dhanaraj, M. Dudley, Y. Chen, B. Ragothamachar, B. Wu, and H. Zhang, J. Crystal Growth 287, 344 (2006).
    6. T. Kimoto, N. Miayamoto, and H. Matsunami, IEEE Trans. Electron Devices, 46, 471 (1999).
    7. M. Na, J. Keum, J. H. Moon, I. H. Kang, and W. Bahng, ECS Trans. 85, 59 (2018).
    8. R. A. Berechman, M. Skowronski, and Q. Zhang, J. Appl. Phys. 105, 074513 (2009).
    9. S. Harada, Y. Yamamoto, K. Seki, A. Horio, T. Mitsuhashi, M. Tagawa, and T. Ujihara, APL mater. 1, 022109 (2013).
    10. H. Fujiwara, H. Naruoka, M. Konishi, K. Hamada, T. Katsuno, T. Ishikawa, Y. Watanabe, and T. Endo, Appl. Phys. Lett. 100, 242102 (2012).
    11. K. Y Lee, C. F Huang, W. Chen, and M. A. Capano, Phys. B: Condens. Matter 401-402, 41 (2007).
    12. K. Shibahara, N. Kuroda, S. Nishino, and H. Matsunami, Jpn. J. Appl. Phys.,26, no. 11 A, pp. L1815–L1817, 1987.
    13. H. Tsuchida, I. Kamata, T. Miyazawa, M. Ito, X. Zhang, and M. Nagano, Mater. Sci. in Semiconductor Proc. 78, 2 (2018).
    14. H. Tsuchida, I. Kamata, M. Nagano, J. Cryst. Growth 306(2), 254 (2007).
    15. K. Y. Lee, and M. A. Capano, J. Electronic Mater. 36, 272 (2007).
    16. T. Kimoto, Progress. Cryst. Growth Charact. Mater., 62, 329 (2016).
    17. Q. Wahab, A. Ellison, A. Henry, and E. Janzén, Appl. Phys. Lett. 76, 2725(2000).
    18. F. La Via, M. Camarda, and A. La Magna, Appl. Phys. Rev. 1, 031301(2014).
    19. E. Y. Tupitsyn, A. Arulchakkaravarthi, R. V. Drachev, and T. S. Sudarshan, J. Cryst. Growth 299 (1), 20 (2007).
    20. N. Hoshino, I. Kamata, T. Kanda Y. Tokuda, H. Kuno, and H. Tsuchida, Appl.Phys. Express 13, 095502 (2020).
    21. S. Ha, P. Mieszkowski, M. Skowronski, and L. B. Rowland, J. Cryst. Growth 244 (3-4), 257 (2002).
    22. N. Piluso, A. Campione, S. Lorenti, A. Severino, G. Arena, S. Coffa, and F. La Via, Mater. Sci. Forum 963, 91 (2019).
    23. J. Łażewski, P. T. Jochym, P. Piekarz, M. Sternik, K. Parlinski, J. Cholewiński, P. Dłużewski, and S. Krukowski, J. Mater. Sci. 54, 10737 (2019).
    24. H. Okino, N. Kameshiro, K. Konishi, A. Shima, and R. Yamada, J. Appl. Phys. 122, 235704 (2017).
    25. H. Fujiwara, T. Kimoto, T. Tojo, and H. Matsunami, Appl. Phys. Lett. 87, 051912 (2005).
    26. R. A. Berechman, M. Skowronski, S. Soloviev, and P. Sandvik, J. Appl. Phys 107, 114504 (2010).
    27. J. D. Callister William and D. G. Rethwisch, Fundamentals of Materials Science and Engineering. (2009).
    28. T. Kimoto and J. A.Cooper, Fundamentals of Silicon Carbide Technology, 252, no. 1120. (2014).
    29. H. Matsunami, “Technological breakthroughs in growth control of silicon carbide for high power electronic devices,” Japanese J. Appl. Physics, 43, no. 10, pp. 6835–6847, (2004).
    30. H. Sheng, Z. Chen, F. Wang, and A. Millner, Twenty-Fifth Annual IEEE, p. 1572 (2010).
    31. Z. Chen, D. Boroyevich, and J. Li, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, pp. 2453-2460, (2013).
    32. T. Kimoto, Jpn. J. Appl. Phys., 54, 040103 (2015).
    33. H. Sheng, Z. Chen, F. Wang, and A. Millner, Applied Power Electronics Conference and Exposition, Twenty-Fifth Annual IEEE, p. 1572 (2010).
    34. S. Ha, M. Skowronski, W. M. Vetter and M. Dudley, J. Appl. Phys, 92, 778 (2002).
    35. Y. Chen, Ph. D. thesis, State University of New York at Stony Brook (2008).
    36. S. Wang, M. Dudley, C. Carter, Jr., D. Asbury and C. Fazi, Mater. Res. Soc. Symp. Proc., 307, 249 (1993).
    37. S. Goel, X. Luo, R. L. Reuben, and W. BinRashid, Nanoscale Res. Lett., 6, 1 (2011).
    38. S. M. SZE, Semiconductor Device, Physics and Technology, Wiley, New York (1985).
    39 K. Kościewicz, W. Strupinski, D. Teklinska, K. Mazur, M. Tokarczyk, G. Kowalski, A. Olszyna, Mater. Sci. Forum, 679, 95 (2011).
    40. K. Masumoto, S. Ito, H. Goto, H. Yamaguchi, K. Tamura, C. Kudou and H. Okumura, Mater. Sci. Forum, 778, 99 (2014).
    41.T. Kimoto and J. A. Cooper, “Fundamentals of silicon carbide technology”, IEEE (2014)
    42. A.V. Kuchuk, P.Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, Adv. Condens. Matter Phys., (2016).
    43. J. H. Park and P. H. Holloway, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 23, no. 2, pp. 486–494, (2005).
    44. H. Matsunami and T. Kimoto, Diam. Relat. Mater., 7, no. 2–5, pp. 342–347, 1998.
    45. M.Yazdanfar et al., J. Cryst. Growth, 380, pp. 55–60, (2013).
    46. M. Yazdanfar, H. Pedersen, O. Kordina, and E. Janzén, Mater. Sci. Forμm, 778–780, pp. 159–162, (2014).
    47. A. ShrI-Vastava, P. Muzykov, B. Pearman, S. M. Angel, and T. S. Sudarshan, Mater. Sci. Forμm, 600–603, pp. 139–142, (2009).
    48. Y.Li et al., J. Cryst. Growth, 506, no. October (2018).
    49. M. Yazdanfar, I. G. I-Vanov, H. Pedersen, O. Kordina, and E. Janzén, J. Appl. Phys., 113, no. 22, (2013).
    50. T. Kimoto et al., IEEE Int. Reliab. Phys. Symp. Proc., pp. 2A1.1-2A1.7, 2017.
    51. N. Ohtani, ECS Transactions, 41 (8) 253-260 (2011).
    52. H. Fujiwara et al., Appl. Phys. Lett., 101, no. 4, pp. 1–5, (2012).
    53. S. Hayashi et al., “Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p – i – n diodes,” (2018).
    54.李建緯, “4H-SiC缺陷分析及其與蕭特基二極體電性之關聯性.” 台灣科技大學化學工程研究所碩士班碩士論文. 台北市. 2018.
    55. H. Okino, N. Kameshiro, K. Konishi, A. Shima, and R. Yamada, J. Appl. Phys. 122, 235704 (2017).
    56. W. Li, and D. Y. Li, Mater. Sci. and Tech. 18, 1057 (2002).
    57. J. Galle, IEEE, VOL. 16, NO. 3, SEPTEMBER (2016).
    58. H. K. Kim, S. I. Kim, S. Kim, N. Lee, H. Shin, and C. W. Lee, Nanoscale 12, 8216 (2020).
    59. C. Kai, X. Sun, Y. Jia, K. Jiang, Z. Shi, J. Ben, Y. Wu, Y. Wang, and D. Li, J. Phys. D: Appl. Phys. 53, 235104 (2020).
    60. L. J. Brillson, G. M. Foster. J. Cox, W. T. Ruane, A. B. Jarjour, H. Gao, H. Von Wenckstern, M. Grundmann, B. Wang, D. C. Look, A. Hyland, and M. W. Allen, J. Electron. Mater. 47(9), 4980 (2018).
    61. Y. N. Picard, , K. X. Liu, R. E. Stahlbush, M. E. Twigg, X. Zhang, and M. Skowronski, J. Appl. Phys. 103, 074904 (2008).

    QR CODE