簡易檢索 / 詳目顯示

研究生: 楊智翔
Chih-hsiang Yang
論文名稱: 次零點一微米金氧半場效電晶體之設計
Device Design of Sub-0.1μm MOSFET's
指導教授: 莊敏宏
Miin-horng Juang
口試委員: 劉政光
Cheng-kuang Liu
葉文昌
Wen-chang Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 96
中文關鍵詞: 金氧半場效電晶體
外文關鍵詞: double-diffused drain, n-MOSFET
相關次數: 點閱:416下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去50年來,隨著墨爾定律不停微縮電晶體。我們希望電晶體微縮到達每一個技術世代時,都能使得電路操作速度更快,同時具有更高的電路積極度。不過,隨著電晶體不停的微縮,要如何確保元件的可靠度以及功率損耗將變的更加困難。在此論文中,首先會簡短敘述目前在電晶體微縮上所遭遇的一些問題。另外,我們將利用TSUPREM4製程模擬軟體和MEDICI元件特性模擬軟體來模擬典型技術所製造而成的次零點一微米bulk MOSFET及SOI MOSFET,並且進一步討論這些技術在電晶體微縮上的影響。
    在深次微米的電晶體中,我們常利用一些通道工程或者是汲極工程來改善我們元件的特性,常見的典型技術像是退後通道的離子植入、HALO離子植入以及袋狀離子植入。而透過這些技術的使用,深次微米電晶體中不理想的特性都能有效的改善。因此,當電晶體持續微縮到次零點一微米時,我們將試著透過這些技術繼續幫助我們達到高效能、高可靠度以及低功率損耗的目標。另外,我們也採用了double-diffused drain去製造次零點一微米的bulk MOSFET及SOI MOSFET,並且與前面所提及的技術作比較。
    在我們研究過程中,發現不同的技術適用於不同的基板。例如,對於bulk MOSFET,通道離子植入搭配HALO離子植入或者袋狀離子植入將具有較佳的特性,這是由於此兩種技術將較其他技術具有較高的Ion/Isub比值和較低的接面電容值。另外,對SOI MOSFET而言,double-diffused drain會具有較佳的特性,這是由於double-diffused drain除了較其他技術具有較高的Ion/Isub比值外,還具有絕佳的抗punch-through能力。


    In the past 50 years, we never stop shrinking MOSFETs is in order to follow Moore’s law. We hope scaling transistors in each technology generation can increase circuit speed and packing density. However, as the devices get smaller, ensuring their reliability and power dissipation become increasing difficult. In this project, we give a brief literature review on the subject of MOSFET scaling. Moreover, we use TSUPREM-4 process simulator and MEDICI device simulator to simulate sub-0.1μm bulk and SOI MOSFET formed by a lot of typical technologies, and further, we discuss these typical technologies effect on scaling MOSFET.
    For channel and drain engineering, there are various kind of technology usually used in deep sub micron regime MOSFET, such as retrograde channel, halo doping, pocket implantation,…..,etc. And these approaches can improve the device characteristics effectively in deep sub micron regime MOSFET. Thus, even if the MOSFET reached the sub-0.1μm generation node, we hope these typical technologies can help us to fulfill the demands for high performance, high reliability and low power consumption. In addition, we also employ double-diffused drain to fabricate sub-0.1μm bulk and SOI MOSFET.
    In this thesis, we find that the different typical technology is suitable for different silicon substrate. For example, the process schemes of Vt with halo implantation and Vt with pocket implantation may be more available for sub-0.1μm node bulk MOSFETs, because of relatively higher ratio of Ion/Isub and smaller junction capacitance. And the process scheme of double-diffused drain may be more available for sub-0.1μm node SOI n-MOSFETs, because of relatively higher ratio of Ion/Isub and excellent punch-through immunity.

    Contents Abstract(Chinese) I Abstract III Acknowledgements V Figure Captions VIII List of Tables XV Chapter 1 Intruction 1 Chapter 2 The Description of Sub-0.1μm MOSFET 3 2-1 Challenges of Shrinking MOSFET 3 2-1-1 Short-Channel-Effects 3 2-1-2 Parasitic Junction Capacitance 10 2-1-3 Source/Drain Parasitic Resistance 11 2-2 Prevailing Technologies in Shrinking MOSFET 12 2-2-1 Reduction in Supply Voltages 12 2-2-2 Channel and Drain Engineering for MOSFETs 13 2-2-3 Gate Oxide Technology 17 2-3 Process Integration Issues 18 Chapter 3 Devices Fabrication and Results Discussion 32 3-1 Bulk MOSFET 32 3-1-1 Fabrication Bulk MOSFET by Typical Technologies 32 3-1-2 Results and Discussion 34 A. Direct Vt Adjust Implant for Channel Engineering 34 B. Double-Diffused Drain 35 C. Comparison of Different Typical Technologies 39 3-2 SOI MOSFET 41 3-2-1 Fabrication SOI MOSFET by Typical Technologies 41 3-2-2 Results and Discussion 43 A. Double-Diffused Drain 43 B. Comparison of Different Typical Technologies 46 Chapter 4 Conclusions 92 References 93 Figure Captions Fig. 2-1 Schematic diagram for charge sharing model explaining the reduction of Vth due to the source/drain depletion regions. 19 Fig. 2-2 Schematic diagram for charge sharing model explaining the reduction of Vth due to the source/drain depletion regions. 20 Fig. 2-3 Show the band diagram of DIBL (Drain Induced Barrier Lowering). 21 Fig. 2-4 Summary of leakage current mechanisms of transistors. 22 Fig. 2-5 Tunneling of electrons through an MOS capacitor. (a) Energy-band diagram at flat-band condition. (b) Energy-band diagram with positive gate bias showing tunneling of electron from substrate to gate. (c) Energy-band diagram at negative gate bias showing tunneling of electron from gate to substrate [10]. 23 Fig. 2-6 Condition of the depletion region near the drain-gate overlap region of an MOSFET when (a) Surface is accumulated with low negative gate bias; and (b) n+ region is depleted or inverted with high negative gate bias [6]. 24 Fig. 2-7 Show the MOSFETs junction capacitance model. 25 Fig. 2-8 The projection of 2001 ITRS for physical gate length. SDE junction depth and maximum ratio of S/D parasitic resistance to the ideal channel resistance (Vdd/Idd) with CMOS technology scaling. 26 Fig. 2-9 Schematically illustrates the parasitic resistance components in a MOSFET structure. 27 Fig. 2-10 Schematic the channel engineering that affected by retrograde channel doping. 28 Fig. 2-11(a) Schematic the drain engineering that affected by halo doping. 29 Fig. 2-11(b) Schematic the drain engineering that affected by pocket implantation. 29 Fig. 2-12 Show the (a) Partially depleted SOI-MOS (PD SOI) and (b) Fully depleted SOI-MOS (FD SOI) devices [22]. 30 Fig. 3-1 The primary device fabrication procedure for the normal process. 48 Fig. 3-2 The primary device fabrication procedure for the halo and pocket process. 49 Fig. 3-3 The primary device fabrication procedure for only pocket adjusted process. 50 Fig. 3-4 The primary device fabrication procedure for the double diffusion process. 51 Fig. 3-5(a) Show the resultant depth profiles of boron for the samples formed by using the different channel implantation conditions of B+ (10kev, 2.11e13 cm-2), B+ (20kev, 2.88e13 cm-2), B+ (30kev, 5.14e13 cm-2). 52 Fig. 3-5(b) Show the threshold-voltage values as a function of channel length for bulk n-MOSFETs formed by using the different channel implantation conditions. 52 Fig. 3-5(c) The on-state current corresponding to Fig. 3-5(b) 53 Fig. 3-5(d) The off-state current corresponding to Fig. 3-5(b) 53 Fig. 3-5(e) Show the impact ionization current as a function of gate voltage for n-MOSFETs formed by using the different channel implantation conditions. 54 Fig. 3-6(a) Show the threshold-voltage values as a function of channel length for bulk n-MOSFETs formed by using different SDE dosage implantation conditions of P+ (43kev, tilt 80o, 1e14 cm-2), P+ (43kev, tilt 80o, 1.6e14 cm-2), P+ (43kev, tilt 80o, 2e14 cm-2). 56 Fig. 3-6(b) Show the off-state current corresponding to Fig. 3-6(a). 56 Fig. 3-6(c) Show the on-state current corresponding to Fig. 3-6(a) 57 Fig. 3-6(d) Show the gate induced drain leakage as a function of gate voltage for bulk n-MOSFETs formed by using different SDE dosage implantation conditions. 57 Fig. 3-6(e) Show the impact ionization current as a function of gate voltage for bulk n-MOSFETs formed by using different SDE dosage implantation conditions. 58 Fig. 3-7(a) Show the threshold-voltage values as a function of channel length for bulk n-MOSFETs formed by using different tilt angle implantation conditions of P+ (43kev, tilt 75o, 1.6e14 cm-2), P+ (43kev, tilt 80o, 1.6e14 cm-2), P+ (43kev, tilt 85o, 1.6e14 cm-2). 59 Fig. 3-7(b) The off-state current corresponding to Fig. 3-7(a). 59 Fig. 3-7(c) The on-state current corresponding to Fig. 3-7(a) 60 Fig. 3-7(d) Show the gate induced drain leakage as a function of gate voltage for bulk n-MOSFETs formed by using different tilt angle implantation conditions. 60 Fig. 3-7(e) Show the impact ionization current as a function of gate voltage for bulk n-MOSFETs formed by using different SDE dosage implantation conditions. 61 Fig. 3-8(a) Show the resultant depth profiles of phosphorus for the samples formed by the different tilt angle implantation conditions of P+ (43kev, tilt 75o, 1.6e14 cm-2), P+ (43kev, tilt 80o, 1.6e14 cm-2), P+ (43kev, tilt 85o, 1.6e14 cm-2). 62 Fig. 3-8(b) Show the surface electric field values at the drain extension region for the samples formed by using different tilt angle implantation conditions. 62 Fig. 3-9(a) Show the threshold-voltage values as a function of channel length for bulk n-MOSFETs formed by using different SDE implantation energy conditions of P+ (38kev, tilt 80o, 1.6e14 cm-2), P+ (43kev, tilt 80o, 1.6e14 cm-2), P+ (48kev, tilt 80o, 1.6e14 cm-2). 63 Fig. 3-9(b) The off-state current corresponding to Fig. 3-9(a). 63 Fig. 3-9(c) The on-state current corresponding to Fig. 3-9(a). 64 Fig. 3-9(d) Show the gate induced drain leakage as a function of gate voltage for bulk n-MOSFETs formed by using different SDE implantation energy conditions. 64 Fig. 3-9(e) Show the impact ionization current as a function of gate voltage for bulk n-MOSFETs formed by using different SDE implantation energy conditions. 65 Fig. 3-10(a) Show the resultant depth profiles of phosphorus for the samples formed by using the different SDE implantation energy conditions of P+ (38kev, tilt 80o, 1.6e14 cm-2), P+ (43kev, tilt 80o, 1.6e14 cm-2), P+ (48kev, tilt 80o, 1.6e14 cm-2). 66 Fig. 3-10(b) Show the surface electric field values at the drain extension region for the samples formed by using different SDE implantation energy. 66 Fig. 3-11(a) Show the threshold-voltage values as a function of channel length for bulk n-MOSFETs formed by using different typical technologies. 67 Fig. 3-11(b) The off-state current corresponding to Fig. 3-11(a). 67 Fig. 3-11(c) The on-state current corresponding to Fig. 3-11(a) 68 Fig. 3-11(d) Show the gate induced drain leakage as a function of gate voltage for bulk n-MOSFETs formed by using different typical technologies. 68 Fig. 3-11(e) Show the impact ionization current as a function of gate voltage for bulk n-MOSFETs formed by using different typical technologies. 69 Fig. 3-12(a) The lateral boron concentration at the surface region for devices formed by using different typical technologies. 72 Fig. 3-12(b) The boron profile for devices formed by using different typical technologies. 73 Fig. 3-12(c) The electric field values for devices formed by using different typical technologies. 74 Fig. 3-13 The primary process flow that fabricates the SOI n-MOSFETs. 75 Fig. 3-14(a) The primary device fabrication procedure for the halo process. 76 Fig. 3-14(b) The SOI n-MOSFET device fabrication procedure for only pocket adjusted process. 77 Fig. 3-15 The SOI n-MOSFET device fabrication procedure for the double diffusion process. 78 Fig. 3-16(a) Show the threshold-voltage values as a function of channel length for SOI n-MOSFETs formed by using different SDE dosage implantation conditions of P+ (43kev, tilt 80o, 1e14 cm-2), P+ (43kev, tilt 80o, 1.5e14 cm-2), P+ (43kev, tilt 80o, 2e14 cm-2) 79 Fig. 3-16(b) The off-state current corresponding to Fig. 3-16(a). 79 Fig. 3-16(c) The on-state current corresponding to Fig. 3-16(a) 80 Fig. 3-16(d) Show the gate induced drain leakage as a function of gate voltage for SOI n-MOSFETs formed by using different SDE dosage implantation conditions. 80 Fig. 3-16(e) Show the impact ionization current as a function of gate voltage for SOI n-MOSFETs formed by using different SDE dosage implantation conditions. 81 Fig. 3-17(a) Show the threshold-voltage values as a function of channel length for SOI n-MOSFETs formed by using different tilt angle implantation conditions of P+ (43kev, tilt 75o, 1.6e14 cm-2), P+ (43kev, tilt 80o, 1.6e14 cm-2), P+ (43kev, tilt 85o, 1.6e14 cm-2). 82 Fig. 3-17(b) The off-state current corresponding to Fig. 3-17(a). 82 Fig. 3-17(c) The on-state current corresponding to Fig. 3-17(a) 83 Fig. 3-17(d) Show the gate induced drain leakage as a function of gate voltage for SOI n-MOSFETs formed by using different tilt angle implantation conditions. 83 Fig. 3-17(e) Show the impact ionization current as a function of gate voltage for SOI n-MOSFETs formed by using different SDE dosage implantation conditions. 84 Fig. 3-18(a) Show the threshold-voltage values as a function of channel length for SOI n-MOSFETs formed by using different SDE implantation energy conditions of P+ (38kev, tilt 80o, 1.6e14 cm-2), P+ (43kev, tilt 80o, 1.6e14 cm-2), P+ (48kev, tilt 80o, 1.6e14 cm-2). 85 Fig. 3-18(b) The off-state current corresponding to Fig. 3-18(a). 85 Fig. 3-18(c) The on-state current corresponding to Fig. 3-18(a) 86 Fig. 3-18(d) Show the gate induced drain leakage as a function of gate voltage for SOI n-MOSFETs formed by using different SDE implantation energy conditions. 86 Fig. 3-18(e) Show the impact ionization current as a function of gate voltage for SOI n-MOSFETs formed by using different SDE implantation energy conditions. 87 Fig. 3-19(a) Show the threshold-voltage values as a function of channel length for SOI n-MOSFETs formed by using different typical technologies. 88 Fig. 3-19(b) The off-state current corresponding to Fig. 3-20(a). 88 Fig. 3-19(c) The on-state current corresponding to Fig. 3-20(a) 89 Fig. 3-19(d) Show the gate induced drain leakage as a function of gate voltage for SOI n-MOSFETs formed by using different typical technologies. 89 Fig. 3-19(e) Show the impact ionization current as a function of gate voltage for SOI n-MOSFETs formed by using different typical technologies. 90 List of Tables Table I. Trade-off a lot of process parameters 31 Table II. illustrates the junction capacitance values for the samples formed by using the different channel implantation conditions of B+ (10kev, 2.11e13 cm-2), B+ (20kev, 2.88e13 cm-2), B+ (30kev, 5.14e13 cm-2). 55 Table III. illustrates the detailed results of physical gate length 50 nm bulk n-MOSFETs formed by different typical technologies 70 Table IV. illustrates the junction capacitance values of physical gate length 50 nm bulk n-MOSFETs formed by different typical technologies 71 Table V. illustrates the detailed results of physical gate length 50 nm SOI n-MOSFETs formed by different typical technologies 91

    References
    [1] S.M. Sze, “Physics of Semiconductor Devices”, 2nd Ed., Wiley Interscience, New York, 1981.
    [2] S. Wolf, “Silicon Processing for the VLSI Era – Volume III – The Submicron MOSFET”, Lattice Press, California, 1995.
    [3] B. G. Streetman, “Solid State Electronic Device”, Prentice Hall, New Jersey, 1990.
    [4] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 3, pp. 143–144.
    [5] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFETs with very small physical dimensions” IEEE J. Solid-State Circuits, vol. SC-9, pp. 256, 1974.
    [6] Kaushik Roy, Hamid Mahmoodi-Meimand, and Saibal Mukhopadhyay, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits”, Proceedings of the IEEE, vol. 91, Issue 2, pp.305-327, Feb 2003.
    [7] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 3, pp. 120–128.
    [8] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design. New York: Wiley, 2000, ch. 2, pp. 27–28.
    [9] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, pp. 97–99.
    [10] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, pp. 95–97.
    [11] R. Pierret, Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996, ch. 6, pp. 235–300.
    [12] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, pp. 94–95.
    [13] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, pp. 99–100.
    [14] Donald A. Neamen, “Semiconductor Physics & Devices”, 3rd Ed., Mc Graw-Hill, ch. 7, pp. 288-289.
    [15] International Technology Roadmap for semiconductor, Semiconductor Industry Association. , San Jose, CA 2001
    [16] Seong-Dong Kim and Jason C. S. Woo, "Detailed Modeling of Source/Drain Parasitics and Their Impact on MOSFETs Scaling" International Workshop on Junction Technology (IWJT2002), pp. 1-2, December 2002.
    [17] Yuan Taur; Buchanan, D.A.; Wei Chen; Frank, D.J.; Ismail, K.E.; Shih-Hsien Lo; Sai-Halasz, G.A.; Viswanathan, R.G.; Wann, H.-J.C.; Wind, S.J.; Hon-Sum Wong, "CMOS scaling into the nanometer regime", Proceedings of the IEEE, vol. 85, Issue 4, pp. 486 – 504, April 1997.
    [18] Y. Taur, “CMOS scaling and issues in sub-0.25 μm systems” in Design of High-Performance Microprocessor Circuits, A. Chandrakasan, W. J. Bowhill, and F. Fox, Eds. Piscataway, NJ: IEEE, 2001, ch. 2, pp. 27–45.
    [19] R. Pierret, Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996, ch. 18, pp. 680–681.
    [20] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFETs with very small physical dimensions”, IEEE J. Solid-State Circuits, vol. SC-9, p. 256, 1974.
    [21] E. S. Yang, “Microelectronic Devices”, McGraw-Hill, New York, 1988, pp. 285-294.
    [22] Dustin K. Slisher, Ronald G. Filippi, Jr., Daniel W. Storaska and Alberto H. Gay, “Scaling Of Si MOSFETs For Digital Applications”, Final Project in the “Advanced Concepts in Electronic and Optoelectronic Devices” class of Professor M. S. Shur, Dec 1999.
    [23] T. Eimori, et al., “Approaches to extra low voltage DRAM operation by SOI-DRAM”, IEEE Transactions on Electron Devices, Vol. ED-45, 1998, pp. 1000-1009.
    [24] Alam, M.; Weir, B.; Silverman, A., “A future of function or failure? [CMOS gate oxide scaling]”, Circuits and Devices Magazine, IEEE
    vol. 18, Issue 2, pp. 42 – 48, March 2002
    [25] “VLSI製造技術”, 莊達人 編著, 高立圖書有限公司, 第五版, 2002.
    [26] E. Rosenbaum, Oxide Reliability, 1996 IEEE International Reliability Physics Symposium, Tutorial Notes, Topic 6a, pp. 6a.1-6a.27.
    [27] R. Degraeve, Oxide Reliability, 1997 IEEE International Reliability Physics Symposium, Tutorial Notes, Topic 7, pp. 7.1-7.71.
    [28] D. J. DiMaria, E. Cartier, “Mechanism for Stress-Induced Leakage Currents in Thin Silicon Dioxide Films”, J. Appl. Phys. Vol. 78, 1995, pp. 3883-3894.

    QR CODE