簡易檢索 / 詳目顯示

研究生: 沈倢汝
Jie-Ru Shen
論文名稱: 反應式濺鍍法之不同陶金靶材及氧氣流量對氮摻雜氧化銦鎵鋅薄膜的影響
Effects of Cermet Target and Oxygen Flow on the Performance of Nitrogen-Doped Indium Gallium Zinc Oxide Films Grown by Reactive Sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭東昊
Dong-Hau Kuo
薛人愷
Ren-Kae Shiue
柯文政
Wen-Cheng Ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 濺鍍薄膜氧化銦鎵鋅氮摻雜非晶氧化物半導體
外文關鍵詞: Sputtering, Thin film, Indium gallium zinc oxide, Nitrogen doping, Amorphous oxide semiconductor
相關次數: 點閱:214下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以含氮化物粉體的方式將N摻雜在IGZO前驅粉體中,並利用本實驗的真空熱壓機壓製而成N摻雜IGZO (IGZNO)靶材,經濺鍍獲得以N原子取代O原子的位置獲得N摻雜IGZO薄膜,期望藉由IGZNO薄膜中的N來提升其薄膜的載子遷移率及薄膜穩定性。實驗中以不同的組成比例製作不同的IGZNO靶材,並在相同濺鍍條件下以RF磁控濺鍍機沉積IGZNO薄膜,找出最佳靶材組成比例的IGZNO靶,並探討其在不同氧氣及氬氣的比例條件對IGZNO薄膜的電性及光學性質造成的影響。本實驗中我們利用EDS、SEM、XRD、AFM、UV-Vis及霍爾效應量測儀來分析薄膜的特性。
    第一部份我們將傳統IGZO靶的In2O3、Ga2O3、ZnO 三種金屬氧化物以金屬In、In2O3、金屬Ga、Ga2O3、GaN及金屬Zn及金屬Sn進行替代並進行球磨以均勻混合,目的為利用較低溫的製程且以氮化物(GaN)的方式將N摻雜進入IGZO靶材中,依照不同的成分比例製作靶材,並在相同條件下進行濺鍍。發現當IGZNO-3靶材組成的莫耳比例為In : In2O3 : Ga : Ga2O3 : GaN : Zn : Sn = 35 : 10 : 12 : 20 : 10 : 8 : 5時,其沉積的薄膜組成In : Ga : Zn的比例接近1 :1 :1,符合InGaZnO4的原子比例,其薄膜表面形貌平坦且結構緻密,表面的方均根粗糙度僅0.422 nm。在電性方面,因其結晶態為非晶相,無晶界阻礙載子的移動,故載子遷移率為最高;在光學性質方面,其在可見光波長範圍之平均穿透率達95 %。
    第二部份我們在固定同一IGZNO-3靶材在沉積溫度300 oC、氣體O2/Ar流量比分別為0/20、5/15、10/10、15/5、20/0的條件下,以濺鍍功率80 W、沉積30分鐘形成IGZNO薄膜,實驗發現,隨著O2的比例增加,薄膜中的In含量會減少,而Zn含量隨之增加,Ga含量則無明顯變化,而N含量在O2/Ar = 10/10時達最高。當O2/Ar = 10/10時,其薄膜表面較平坦且無明顯顆粒狀組織,表面的均方根粗糙度低於0.5 nm,而在XRD繞射圖譜中也無明顯繞射峰。在電性方面,以O2/Ar = 10/10濺鍍的薄膜特性較優異,其載子濃度為1015 cm-3,遷移率為47.08 cm2V-1s-1;而在光學性質方面,所有薄膜在可見光波長範圍之穿透率皆達85 %以上。


    In this research, nitrogen-doped IGZO thin film was successfully deposited by RF reactive sputtering with IGZNO targets. The targets were made by hot pressing machine in our laboratory. We expect the replacement of O atom by N atom to improve the carrier mobility and electrical stability of IGZNO film. To optimize the best composition for the target, IGZNO targets with different compositions were made and deposited by RF magnetron under the same sputter conditions. Furthermore, to optimize the best atmosphere for the IGZNO target, we chose the IGZNO target with the best composition to be sputtered at different atmospheres in the chamber at different ratios of oxygen and argon. In this work, all films were analyzed by EDS, SEM, XRD, AFM, UV-Vis, and Hall effect measurement.
    In2O3, Ga2O3, and ZnO mixed for the traditional IGZO target were replaced by In metal, In2O3, Ga metal, Ga2O3, GaN, Zn metal, and Sn metal to be uniformly mixed. The purpose is to make the target at lower temperature and dope N into the IGZO target using GaN for N doping in IGZO films. We deposited all the IGZNO films by RF magnetron under the same sputter condition with different IGZNO targets. When the molar percentages for the composition of the IGZNO-3 target are 35 : 10 : 12 : 20 : 10 : 8 : 5 for In : In2O3 : Ga : Ga2O3 : GaN : Zn : Sn, the In:Ga:Zn ratio of film composition is close to 1:1:1, which corresponds to the InGaZnO4 phase. The surface of the IGZNO-3 film is flat and dense, and the root-mean-square roughness of the surface is only 0.422 nm. There were no X-ray peaks in XRD analysis, which indicates an amorphous IGZNO phase. Because of the amorphous phase of IGZNO-3, there is no grain boundary to hinder the movement of carriers and the carrier mobility can reach the highest among films from all the targets. In terms of optical properties, the average transmittance in the visible light range was 95 %.
    The IGZNO-3 target was sputtered at different atmospheres of O2/Ar = 0/20, 5/15, 10/10, 15/5, and 20/0, respectively. As the proportion of O2 increased, the In content of the film decreased, while the Zn content increased. The Ga content did not change significantly while the proportion of O2 in the chamber varied. The N content reached the highest at O2/Ar = 10/10. The surface was very flat and the structure of the film was dense without obvious cracks. The root-mean-square roughness of the surface was less than 0.5 nm. There waere no obvious diffraction peaks in the XRD diffraction spectrum. In the Hall effect measurement, the film has better electrical properties. The carrier concentration of IGZNO-10O2 was 1015 cm-3 and its mobility reached 47.08 cm2V-1s-1. In terms of optical properties, the average transmittance in the visible light range was above 85 %.

    摘要 I Abstract III 圖目錄 VIII 表目錄 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第2章 文獻回顧與原理 5 2.1氧化銦鎵鋅(InGaZnO4, IGZO)的介紹 5 2.2 氧化銦鎵鋅的導電機制 10 2.3 薄膜的製備方法 12 2.4 不同條件下製備IGZO薄膜 13 2.5 不同IGZO薄膜的摻雜 29 第3章 實驗方法與步驟 34 3-1 實驗材料及規格 34 3.2 實驗設備 36 3.2.1 分析電子秤 36 3.2.2 球磨機 36 3.2.3 真空熱壓機 37 3.2.4 超音波震盪機 37 3.2.5 射頻反應式濺鍍系統 38 3.3 實驗步驟 39 3.3.1 靶材粉末配製 40 3.3.2 熱壓靶材 41 3.3.3 基板裁切與清洗 42 3.3.4 薄膜濺鍍 42 3.3.5 薄膜特性量測 43 3.4 分析儀器介紹與量測參數 44 3.4.1 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 44 3.4.2 X光繞射儀 (High Power X-ray Diffractometer, XRD) 45 3.4.3 紫外光-可見光/近紅外光分析儀 (UV-Vis / NIR spectrophotometer) 49 第4章 結果與討論 51 4.1 相同濺鍍條件下以不同靶材所濺鍍之IGZNO薄膜分析探討 51 4.1.1 相同濺鍍條件下以不同靶材所濺鍍之IGZNO薄膜成分分析 51 4.1.2 相同濺鍍條件下以不同靶材所濺鍍之IGZNO薄膜SEM分析 54 4.1.3 相同濺鍍條件下以不同靶材所濺鍍之IGZNO薄膜XRD分析 56 4.1.4 相同濺鍍條件下以不同靶材所濺鍍之IGZNO薄膜AFM分析 58 4.1.5 相同濺鍍條件下以不同靶材所濺鍍之IGZNO薄膜光學性質分析 61 4.1.6 相同濺鍍條件下以不同靶材所濺鍍之IGZNO薄膜霍爾效應電性量測 63 4.2 改變氧氣及氬氣比例之IGZNO薄膜特性分析及探討 65 4.2.1 改變氧氣及氬氣比例之IGZNO薄膜成分分析 65 4.2.2 改變氧氣及氬氣比例之IGZNO薄膜SEM分析 68 4.2.3 改變氧氣及氬氣比例之IGZNO薄膜XRD分析 71 4.2.4 改變氧氣及氬氣比例之IGZNO薄膜AFM分析 73 4.2.5 改變氧氣及氬氣比例之IGZNO薄膜光學性質分析 76 4.2.6 改變氧氣及氬氣比例之IGZNO薄膜霍爾效應電性量測 78 第5章 結論 81 第6章 參考文獻 84

    [1] 邱智慧,經濟與環境共榮太陽光電助地方一臂之力,聯合新聞網,2020。
    [2] 台灣光電廠拚活路,聚焦新領域,中央通訊社,2020。
    [3] A. Rolland, J. Richard, J. P. Kleider, D. Mencaraglia, Electrical- properties of amorphous-silicon transistors and MIS-devices - comparative-study of top nitride and bottom nitride configurations, Journal of the Electrochemical Society, 140 (1993) 3679-3683.
    [4] S. D. Brotherton, Polycrystalline silicon thin-film transistors, Semiconductor Science and Technology 10 (1995) 721-738.
    [5] J. K. Jeong, The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays, Semiconductor Science and Technology, 26 (2011) 1-10.
    [6] R. Triggs, Display technology explained: a-Si, LTPS, amorphous IGZO, and beyond, 2014.
    [7] 陳逸民,2013顯示器面板產業發展趨勢,光連雙月刊,2013。
    [8] H. Hosono, M. Yasukawa, H. Kawazoe, Novel oxide amorphous semiconductors: transparent conducting amorphous oxides, Journal of Non-Crystalline Solids, 203 (1996) 334-344.
    [9] H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples, Journal of Non-Crystalline Solids, 198-200 (1996) 165-169.
    [10] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, 300 (2003) 1269-1272.
    [11] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432 (2004) 488-492.
    [12] R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, Optical, structural, and electrical properties of indium oxide thin films prepared by the sol-gel method, Journal of Applied Physics, 82 (1997) 865-870.
    [13] Z. Ji, J. Du, J. Fan, W. Wang, Gallium oxide films for filter and solar-blind UV detector, Optical Materials, 28 (2006) 415-417.
    [14] R. Navamathavana, C. K. Choia, S. J. Park, Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering, Journal of Alloys and Compounds, 475 (2009) 889-892.
    [15] N. Kenji, T. Akihiro, K. Toshio, O. Hiromichi, H. Masahiro, H. Hideo, Amorphous oxide semiconductors for high-performance flexible thin-film transistors, Japanese Journal of Applied Physics, 45 (2006) 4303-4308.
    [16] H. Hosono, Ionic amorphous oxide semiconductors: material design, carrier transport, and device application, Journal of Non-Crystalline Solids, 352 (2006) 851-858.
    [17] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Carrier transport and electronic in amorphous oxide semiconductor, a-InGaZnO4, Thin Solid Films 486 (2005) 38-41.
    [18] V.Assunção, Elvira Fortunato, António Marques, Alexandra Gonçalves, Isabel Ferreira, Hugo Águas, Rodrigo Martins, New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering, Thin solid films, 442 (2003) 106-102.
    [19] H. Yabuta, M. Sano, K. Abe, T. Aiba,T. Den, and H. Kumomi, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering, Applied physics letters, 89 (2006) 112123.
    [20] M. J. Gadre and T. L. Alford, Highest transmittance and high-mobility amorphous indium gallium zinc oxide films on flexible substrate by room-temperature deposition and post-deposition anneals, Applied physics letters, 99 (2011) 051901.
    [21] A. Thakur, S. J. Kang, J. Y. Baik, H. Yoo, I. J. Lee, H. K. Lee, S. Jung, J. Park, H. J. Shin, Effects of working pressure on morphology, structural, electrical and optical properties of a-InGaZnO4 thin films, Materials Research Bulletin, 47 (2012) 2911-2914.
    [22] Y.S. Lee, W.J. Chen, J.S. Huang, S.C. Wu, Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows, Thin Solid Films, 520 (2012) 6942-6946.
    [23] X.F. Chen, G. He, J. Gao, J.W. Zhang, D.Q. Xiao, P. Jin, B. Deng, Substrate temperature dependent structural, optical and electrical properties of amorphous InGaZnO4 thin films, Journal of Alloys and Compounds, 632 (2015) 533 - 539.
    [24] A.K. Sahoo, G.M. Wu, Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors, Thin Solid Films, 605 (2016) 129 - 135.
    [25] C. Liu , Ying Sun, Houyun Qin, Yiming Liu, Song Wei, and Yi Zhao, Low-Temperature, High-Performance InGaZnO Thin-Film Transistors Fabricated by Capacitive Coupled Plasma-Assistant Magnetron Sputtering, IEEE electron device letters, 40 (2019) 415-418.
    [26] J. Kim, JinsuPark, GeonjuYoon, AgrawalKhushabu, Jin-SeokKim, SangwooPae, Eun-ChelCho, JunsinYi, Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics, Materials Science in Semiconductor Processing, 120 (2020) 105264.
    [27] B.Y. Su, S.Y. Chu, Y.D. Juang, S.Y. Liu, Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO4 thin-film transistors, Journal of Alloys and Compounds, 580 (2013) 10-14.
    [28] J.G. Um, Jin Janga, Heavily doped n-type a-IGZO by F plasma treatment and its thermal stability up to 600 °C, Applied physics letters, 112 (2018) 162104.
    [29] Il Man Choi, M. J. Kim, N. On, A. Song, K. B. Chung, H. Jeong, J. K. Park, J. K. Jeong, Achieving High Mobility and Excellent Stability in Amorphous In–Ga–Zn–Sn–O Thin-Film Transistors, IEEE transactions on electron devices, 67 (2020) 1014-1020.
    [30] S. Chen., A. J. Schwartz, T. B. Massalski, D. E. Laughlin, Extrinsic paramagnetic Meissner effect in multiphase indium-tin alloys, Applied Physics Letters, 89 (2006) 111903.

    QR CODE