簡易檢索 / 詳目顯示

研究生: 陳致君
Chih-Chun Chen
論文名稱: 使用C類動態偏壓之壓控震盪器與利用開關式RLC共振腔之注入鎖定除三除頻器之設計
Design of Dynamic Tail Biased Class-C Voltage- Controlled-Oscillator and Study on Divide-by-3 Injection-Locked Frequency Divider Using Switched RLC Resonator
指導教授: 張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
口試委員: 徐敬文
Ching-Wen Hsue
王煥宗
Huan-Chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 136
中文關鍵詞: 壓控震盪器注入鎖定除三除頻器
外文關鍵詞: Voltage- Controlled-Oscillator(VCO), Divide-by-3 Injection-Locked Frequency Divider
相關次數: 點閱:227下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電壓控制振盪器與除頻器是頻率合成器電路中,主要的電路之一。對電壓控制振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作,寬的操作頻寬及低功率消耗。


    The key building blocks in the frequency synthesizer are the voltage controlled oscillator (VCO), and the high frequency divider circuit. Most importantly, low phasenoise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit. The output of the VCO is divided down by the frequency divider which required operating at high frequency, wide operating range and lower power consumption.

    摘要......................................... I Abstract ................................... III 誌謝......................................... V Table of Contents .......................... VI List of Figure............................. VIII Chapter 1 Introduction ...................... 1 1.1. Research Background .................... 1 1.2. Thesis Organization .................... 4 Chapter 2 Overview of the Voltage-Controlled -Oscillators ......... 6 2.1. Basic Theory of Oscillators .................................. 6 2.2. Oscillation Conditions ....................................... 11 2.2.1. Positive Feedback (PFB)..................................... 11 2.2.2. Negative Resistance (NR) ................................... 13 2.3. Passive Component Research ................................... 16 2.3.1. Resistor ................................................... 16 2.3.2. Inductor and Transform ..................................... 17 2.3.3. Capacitors and Varactors ................................... 29 2.4. Classification of Oscillators ................................ 35 2.4.1. Ring Oscillator ............................................ 35 2.4.2. LC-Tank Oscillator ......................................... 40 2.5. Design Concepts of Voltage-Controlled Oscillator ............. 55 2.5.1. Parameters of a Voltage-Controlled Oscillator .............. 56 2.5.2. Phase Noise in Oscillator .................................. 58 Chapter 3 Principles and Design Concepts of Injection Locking Frequency Divider............................................................ 67 3.1. Introduction to Injection-Locked Frequency Divider ........... 67 3.2. Principle of Injection Locked Frequency Divider .............. 68 3.3. Locking Range ................................................ 70 Chapter 4 Dynamic Tail Biased Class-C Voltage-Controlled-Oscillator 74 4.1. Introduction ................................................. 74 4.2. Circuit Design ............................................... 77 4.3. Measurement and Discussion ................................... 80 4.4. Conclusion ................................................... 85 Chapter 5 Study Voltage Tuning Effect on A Low-Power and Low-Phase Noise Ncore Voltage-Controlled-Oscillator ............................... 86 5.1. Introduction ................................................. 86 5.2. Circuit Design ............................................... 88 5.3. Measurement and Discussion ................................... 91 5.4. Conclusion ................................................... 96 Chapter 6 Study on Divide-by-3 Injection-Locked Frequency Divider Using Switched RLC Resonator ............................................ 97 6.1. Introduction ................................................. 97 6.2. Circuit Design ............................................... 98 6.3. Measurement and Discussion .................................. 102 6.4. Conclusion .................................................. 114 Chapter 7 Conclusion ............................................. 115 Refference ....................................................... 116

    [1] B. Razavi, “RF Microelectronics,” Upper Saddle River, NJ: Prentice Hall, 1998.
    [2] N. M. Nguyen and R. G. Meyer,“ Start-up and frequency stability in highfrequency
    oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820,
    May 1992.
    [3] B. Razavi, “Design of Analog CMOS Integrated Circuit”, McGraw Hill, 2008.
    [4] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits”,
    Cambridge University Press 1998.
    [5] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors”,
    IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun
    1974.
    [6] C. P. Yue, C. Ryu, Jack Lau, T. H. Lee, and S. Wong, “A physical model for planar
    spiral inductors on silicon,” 1996 International Electron Devices Meeting
    Technical Digest, pp. 155–158, Dec. 1996.
    [7] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of
    Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [8] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE
    Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [9] B. Razavi , “Design of Integrated Circuits for Optical Communications”, Mc Graw
    Hill.
    [10] S.J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase
    Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-
    State Circuits, vol. 32, No. 2, February 1997.
    [11] G. Gonzalez, “Microwave Transistor Amplifiers Analysis And Design” , Prentice
    117
    Hall 1997.
    [12] 劉隽宇, 翁若敏,“運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調
    變範圍之壓控振盪器,” 2005.07.
    [13] B. De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phasenoise
    integrated LC-VCO set with flicker-noise upconversion minimization,”
    IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
    [14] S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V.
    Boccuzzi, “Frequency dependence on bias current in 5 GHz CMOS VCOs: impact
    on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol.
    37, pp. 1003-1001, 2002.
    [15] J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure
    of merit for oscillator benchmarking,” IEEE International Symposium on Circuit
    and System (ISCAS), vol. 2, pp. 533-536, May 2000.
    [16] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC
    oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [17] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State
    Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [18] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings
    of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [19] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,”
    IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [20] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE
    J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
    [21] Roberto Nonis, Pierpaolo Palestri, and Luca Selmi, “A Design Methodology for
    MOS Current-Mode Logic Frequency Dividers,” IEEE Transactions on Circuit
    118
    and systems—I: Regular Papers, vol. 54, no. 2, pp. 245-254, Feb. 2007.
    [22] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/
    129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-
    897, July 1996.
    [23] Tai-Cheng Lee, Yen-Chuan Huang, “The Design and Analysis of a Miller-Divider-
    Based Clock Generator for MBOA-UWB Application,” IEEE Journal of Solid-
    State Circuit, vol. 41, no. 6, pp.1253-1261, Jun. 2006.
    [24] S.-L.Jang, C.-H.Liu, C.-W.Chang, and M.-H.Juang,” A low voltage, low
    powerdivide-by-4 LC-tank injection-locked frequency divider,” Int. J.
    Electronics., vol. 98, no. 4, pp. 521-527, April. 2011.
    [25] S.-L.Jang, C. C. Liuand, C.-W. Chung, ”A tail-injected divide-by-4 SiGe HBT
    injection locked frequency divider,” IEEE Microw. Wireless Compon.Lett., vol.19,
    no. 4, pp. 236-238, April 2009.
    [26] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked
    divider,” IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472–2481, Feb. 2006.
    [27] P. Andreani, X. Wang, L. Vandy, and A. Frad, “A study of phase noise in Colpitts
    and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp.
    1107-1118, May. 2005.
    [28] A. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general
    result on phase noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729,
    Dec. 2008.
    [29] K. Okada, Y. Nomiyana, R. Murakami, and A. Matsuzawa, “A 0.114 mW dualconduction
    class-C CMOS VCO with 0.2 V power supply,” in Proc. IEEE Symp.
    Circuits, Jun. 2009, pp. 228-229.
    [30] J. Chen, F. Jonsson, M. Carlsson, C. Hedenas, and L. R. Zheng, “A low power,
    119
    start-up ensured and constant amplitude class-C VCO in 0.18 um CMOS,” IEEE
    Microw. Wireless Compon. Lett., vol. 21, no. 8, pp.427-429, Aug. 2011.
    [31] L. Fanori and P. Andreani, “Highly efficient class-C CMOS VCOs, including a
    comparison with class-B VCOs,” IEEE J. Solid. State Circuits, vol.48, no.7, pp.
    1730-1740, 2013.
    [32] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC
    VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, Jun. 2001.
    [33] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched
    tuning,” Proc. IEEE Custom Integr. Circuits Conf., (1998), pp. 555-558.
    [34] J. Kim, J. Shin, S. Kim, et al., “A wide-band CMOS LC VCO with linerized coarse
    tuning characteristics,” in IEEE Trans Circuits Syst, (2008), pp. 399-403.
    [35] A. Bonfanti, S. Levantino, C. Samori, and A. L. Lacaita, “A varactor configuration
    minimizing the amplitude-to-phase noise conversion in VCOs,” IEEE Trans.
    Circuits Syst. I, vol. 53, no. 3, pp. 481-488, Mar. 2006.
    [36] M. D. Wei, S. Chang, Y. Yang, “A CMOS back gate-coupled QVCO based on
    back-to-back series varactor configuration for minimal AM-to-PM noise
    conversion ,“ IEEE Microw. Wireless Compon. Lett., pp. 320-322, (2009).
    [37] H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, “A low phase-noise CMOS VCO
    with harmonic tuned LC tank,” IEEE Trans. Microwave Theory and Techniques,
    vol. 54, no. 7, pp. 2917-2924, Jul. 2006.
    [38] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injectionlocked
    frequency divider,” in IEEE ISSCC Dig. Tech. Papers, pp.27–29, Feb. 2006.
    [39] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection
    locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron.,
    vol.E91-C, no.6, pp. 956–962, Jun. 2008.
    120
    [40] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35μm CMOS frequency
    divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett.,
    vol. 18, no. 7, pp.470–472, July 2008.
    [41] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, “Wide-locking range divide-by-3
    injection-locked frequency divider using 6th-order RLC resonator,” published
    online, IEEE Transactions on Very Large Scale Integration Systems 2016.
    [42] S.-L. Jang and C.-Y. Lin, “Wide-locking range class-C injection-locked frequency
    divider,” Electron. Lett., vol. 50, no. 23, pp. 1710–1712, Jun. 2014.
    [43] K.-H. Chien, J. Y. Chen, and H.-K. Chiou, “Designs of K-band divide-by-2 and
    divide-by-3 injection-locked frequency divider with Darlington topology,” IEEE
    Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2877–2888, Sep. 2015.
    [44] S.-L. Jang, C.-Y. Lin, and M.-H. Juang, “Enhanced locking range technique for
    divide-by-3 differential injection-locked frequency divider,” Electron. Lett., vol.
    51, no. 6, pp. 456–458, Mar. 2015.
    [45] S.-L. Jang and J.-H Hsieh, ” A wide-locking range ÷3 injection-locked frequency
    divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process.,
    Vol. 77, pp 593-598, 2013.

    無法下載圖示 全文公開日期 2021/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE