簡易檢索 / 詳目顯示

研究生: 呂沛檄
Pei-Xi Lu
論文名稱: 注入鎖定除頻器之研究
Design of Injection-Locked Frequency Dividers
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
鄧恆發
Heng-Fa Teng
莊昀學
Yun-Hsueh Chuang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 110
中文關鍵詞: 除頻器壓控震盪器金氧半電晶體
外文關鍵詞: divider, vco, CMOS
相關次數: 點閱:204下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文提出了三個注入鎖定除頻器(ILFDs)一個晶片天線結合壓控振盪器(VCO),它們分別使用了標準台積電0.18微米和0.35微米CMOS製程去實現。
    第一個電路是使用兩相位寬鎖頻範圍之注入鎖定除頻器,用此電路來探討如何達到寬的鎖頻範圍。在ILFD電壓為1.35V時,可調頻率為3.77到3.9GHz。在注入信號功率為0dBm時鎖頻範圍為5.6到10.2GHz。且在ILFD電壓為1.35V時,消耗功率為2.7mW,本電路在可調電壓為1.2V時相位雜訊為-112.0dBc/Hz,當注入0dBm的訊號時相位雜訊為-128.0dBc/Hz。另一為四相位寬鎖頻範圍之注入鎖定除頻器,可調頻率為3.6到4.282GHz而當注入訊號為0dBm時鎖頻範圍為4.2到9GHz,此四相位注入鎖定除頻器在電壓為1.4V時消耗功率為7.91mW,此電路是使用台積電0.18μm製程。
    第三個電路是一個是創新架構注入鎖定除三電路,此電路由0.35μm CMOS製程,電路全部為pMOS所組成,在交互耦合pMOS與注入pMOS中間加入一變壓器式電感,在電壓為2V可調頻率為2.433到2.79GHz,而當注入訊號功率為0dBm時鎖頻範圍為7.17 GHz 到8.3 GHz,大約1.13GHz.此電路消耗功率為8.64mW。
    最後一個電路是由互補式壓控振盪器使用0.18μm製程,將傳統的壓控振盪器的電感用迴路天線取代,當電路的電壓為1.9V時電路的可調範圍為4.901 GHz 到4.988 GHz。迴路天線約可傳輸0.7公尺,此電路的消耗功率為19.95mW。


    This thesis presents three injection locked frequency dividers and one integrated chip antenna voltage controlled oscillator.
    The proposed wideband injection locked frequency divider (ILFD) and describes the techniques to widen the locking ranges of the ILFD. At the supply voltage of 1.35V, the tuning range of the free running ILFD is from 3.77GHz to 3.90 GHz and the locking range of the ILFD is 4.6GHz, from 5.6 to 10.2GHz at the injection signal power of 0dBm. The ILFD dissipates 2.7mW at supply voltage of 1.35V and was fabricated in the TSMC 1P6M 0.18μm CMOS process. At the tuning voltage of 1.2V, the measured phase noise of free running ILFD is about -112.0dBc/Hz at 1MHz offset frequency from 3.89GHz and the phase noise of the locked ILFD is about -128.0dBc/Hz, while the input signal is with a power of 0dBm., the second ILFD is a quadrature wide locking range ILFD, the measurement shows the tuning range is 3.6 ~ 4.282GHz and the locking range is from 4.2 ~ 9 GHz when the injection input power is 0 dBm, the quadrature ILFD dissipates 7.91mW at supply voltage of 1.4V and was fabricated in the TSMC 1P6M 0.18μum CMOS process.
    The third circuit is a new divide-by-3 ILFD fabricated in the 0.35μm CMOS 2P4M CMOS technology. The divider consists of a pMOS cross-coupled LC oscillator, two injection MOSFETs and a transformer staggered in between the cross-coupled pMOSFETs and injection FETs, and the LC resonator is composed of two inductors and varactors. The injection FET uses the transformer load to increase the locking range. At the supply voltage of 2V, the divider free-running frequency is tunable from 2.433 to 2.79 GHz, and at the incident power of 0 dBm the locking range is about 1.13 GHz, from the incident frequency 7.17 to 8.3GHz. The core power consumption is 8.64mW.
    Last chip is a complementary VCO fabricated in the 0.18μm CMOS, the VCO’s inductor to replace the loop antenna, At the supply voltage of 1.9V, the measurement shows tuning range from 4.9 ~ 4.988 GHz, the loop antenna radiate distance about 0.7m. The core power consumption is 19.95mW.

    中文摘要 I ABSTRACT III 誌謝 V LIST OF FIGURES VIII LIST OF TABLES XII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 PLL ARCHITECTURE 2 1.3 OVERVIEW OF THIS THESIS 4 CHAPTER 2 THE THEOREM OF OSCILLATORS 5 2.1 BASIC THEORY OF OSCILLATORS 5 2.1.1 TWO-PORT (FEEDBACK) VIEW 5 2.1.2 ONE-PORT (NEGATIVE RESISTANCE) VIEW 7 2.2 QUALITY FACTOR (Q) 9 2.3 PHASE NOISE (PN) 12 2.4 CAPACITOR AND VARACTOR 17 2.4.1 CAPACITORS 17 2.4.2 VARACTORS 19 2.5 INDUCTOR AND TRANSFORMER 26 2.5.1 INDUCTOR 26 2.5.2 TRANSFORMER 35 2.6 OSCILLATOR AND PARAMETER OF VCO 40 2.6.1 CROSS COUPLE OSCILLATOR 40 2.6.2 PARAMETER OF VCO 41 2.7 REFERENCES 45 CHAPTER 3 THEORY OF INJECTION LOCKED FREQUENCY DIVIDER 47 3.1 INTRODUCTION 47 3.2 CLASSIFICATION OF ANALOG FREQUENCY DIVIDERS 48 3.3 CLASSIFICATION OF ILFDS 49 3.4 TOPOLOGY OF DIVIDE-BY-2 ILFD 52 3.5 REFERENCES 53 CHAPTER 4 A WIDE LOCKING RANGE INJECTION LOCKED FREQUENCY DIVIDER 54 4.1 INTRODUCTION 54 4.2 CIRCUIT DESIGN 56 4.3 MEASUREMENT RESULTS 61 4.4 CONCLUSION 66 4.5 QUADRATURE ILFD 67 4.6 REFERENCES 72 CHAPTER 5 DIVIDE-BY-3 LC INJECTION LOCKED FREQUENCY DIVIDER WITH A TRANSFORMER AS AN INJECTION LOAD 74 5.1 INTRODUCTION 74 5.2 OPERATION PRINCIPLE OF THE DIVIDE-BY-3 ILFD 75 5.3 MEASUREMENT RESULTS 79 5.4 CONCLUSION 82 5.5 REFERENCES 83 CHAPTER 6 INTEGRATED CHIP ANTENNA VCO 84 6.1 INTRODUCTION 84 6.2 SIMULATION OF LOOP ANTENNA 86 6.3 CIRCUIT DESIGN OF VCO 90 6.4 MEASUREMENT RESULTS 93 6.5 CONCLUSION 95 6.6 REFERENCES 95 CHAPTER 7 CONCLUSIONS 97

    [1] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
    [2] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
    [3] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, 1996.
    [4] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
    [5] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [6] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [7] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
    [8] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [9] P. Andreani, and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
    [10] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 736-744, May 1997.
    [11] C. P. Yue, and S. S. Wong, “Design strategy of on-chip inductors for highly integrated RF systems,” Design Automation Conference, pp. 982-987, 21-25 June 1999.
    [12] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [13] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [14] J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, 2000.
    [15] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1415-1424, Sept. 2004
    [16] K. Yamamoto and M. Fujishima, ”55GHz CMOS frequency divider with 3.2GHz locking range,” European Solid-State Circuits Conference, pp. 135-138, Sept. 2004.
    [17] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813–821, June 1999.
    [18] S.-L. Jang, and C.-F. Lee , ” A wide locking range LC-tank injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp.613-615, Aug., 2007.
    [19] S.-H. Lee, S.-L. Jang, and Y.-H. Chung , ” A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., pp.373-375, May, 2007.
    [20] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004.
    [21] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers. pp. 412-413, Feb. 2001.
    [22] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415 – 1424, Sep. 2004.
    [23] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation” IEEE J.Solid-State Circuits, vol. 39, pp. 1425-1433, Sept. 2004.
    [24] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594 – 601, Apr. 2004.
    [25] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [26] Qun Gul, Zhiwei Xu" 2 and Mau-Chung Frank Chang' “A Wide Locking Range and Low Power V-band Frequency Divider in 9Onm CMOS” 2007 Symposium on VLSI Circuits Digest of Technical Papers.
    [27] S.-L. Jang, C.-W. Chang, S.-C. Wu, C.-F. Lee, L.-Y. Tsai, and J.-F.Huang, ”Quadrature HartleyVCO and Injection-Locked Frequency Divider,” in press, IEICE Trans. Electron., Vol.E91-C,No.8,Aug. 2008.

    [28] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, June 1999.
    [29] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004.
    [30] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27-29.
    [31] W.-Z. Chen and C.-L. Kuo, “18GHz and 7GHz superharmonic injection-locked dividers in 0.25μm CMOS technology,” in Proc. ESSCIRC, pp 89-92, 2002.
    [32] S.-L. Jang, W. Yeh and C.-F. Lee, ” A low power CMOS divide-by-3 LC-tank injection locked frequency divider ,” Microwave and Optical Technology Lett.,Vol. 50, no. 1, pp.259-262, Jan. 2008.
    [33] S.-L. Jang, C.-Feng Lee, and W.-H. Yeh, ” A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., pp.142-144, Feb. 2007.
    [34] A. Shamim, P. Popplewell, V. Karam, L. Roy, J. Rogers and C. Plett. “5.2 GHz On-Chip Antenna/ Inductor for Short Range Wireless Communication Applications”, Antenna Technology Small Antennas and Novel Metamaterials, pp 213- 216, March, 2006.
    [35] Kenneth K. O, Senior Member, IEEE, Kihong Kim, Brian A. Floyd, Member, IEEE, Jesal L. Mehta, Hyun Yoon,Chih-Ming Hung, Member, IEEE, Dan Bravo, Timothy O. Dickson, Xiaoling Guo, Ran Li, Narasimhan Trichy,Jim Caserta, Wayne R. Bomstad, II, Jason Branch, Dong-Jun Yang, Jose Bohorquez, Eunyoung Seok, Li Gao,Aravind Sugavanam, J.-J. Lin, Jie Chen, and J. E. Brewer, Life Senior Member, IEEE “On-Chip Antennas in Silicon ICs and Their Application”,
    IEEE Transactions on Electron Devices, vol. 52, pp. 1312-1323, 2005.
    [36] A. B. M. H. Rashid, Senior Member, IEEE, S. Watanabe, and T. Kikkawa, Senior Member, IEEE, "High transmission gain integrated antenna on extremely high resistivity Si for ULSI Wireless Interconnect", IEEE Electron Device Letters, pp.73 1-733, Dec 2002.
    [37] Victor Karam, Peter H. R. Popplewell, Atif Shamim, John Rogers, Calvin Plett
    “A 6.3 GHz BFSK Transmitter with On-Chip Antenna for Self-Powered Medical Sensor Applications” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp101-104, June 2007.
    [38] Popplewell, P.; Karam, V.; Shamim, A.; Rogers, J.; Roy, L.; Plett, C.”A 5.2-GHz BFSK Transceiver Using Injection-Locking and an On-Chip Antenna” Journal of Solid States Circuits, pp 981-990, April 2008.

    QR CODE