簡易檢索 / 詳目顯示

研究生: 林子鈞
Tz-Jun Lin
論文名稱: 雙頻注入鎖定三倍頻器和具有新穎性架構之四相位壓控震盪器
Dual-Band Injection-Locked Frequency Tripler and QVCOs with Novel Architecture
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
徐茂修
Mao-Hsiu Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 144
中文關鍵詞: 雙頻注入鎖定三倍頻器四相位壓控震盪器
外文關鍵詞: Dual-Band, Injection-Locked Frequency Tripler, QVCO
相關次數: 點閱:187下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的日新月異,頻率合成器在現今社會中已佔據不可或缺的角色,許多產品都需要有高速傳輸的功能,不外乎有除頻器、倍頻器、以及VCO,這些都是追求低功耗、高倍頻範圍、以及低相位雜訊重要的指標,本文分成三大部分,分別為應用於雙頻架構的三倍頻器以及兩顆經由不同耦合方式的四相位VCO。晶片使用tsmc 0.18-μm CMOS mixed-signal and RF 1P6M technology和tsmc 0.18-μm BICMOS mixed-signal SiGe general purpose standard process FSG Al 3P6M 1.8&3.3V製程工藝製作。
    第一部分為雙頻架構的注入鎖定三倍頻器,晶片面積為0.901 × 1.2 mm2,利用雙端注入產生一倍諧振經由兩顆n型電晶體源極之間串接一電感產生二倍頻率輸出,最後由汲極輸出三倍頻訊號。此電路利用兩顆n型電晶體交叉耦合形成負阻抗。在總偏壓1.2 V、調頻電壓為0 V時自振頻率為3.78 GHz、調頻電壓為2 V時自振頻率為5.47 GHz,功耗約為12.036 mW,當輸入訊號功率為 0 dBm 時,兩自振頻率疊加輸入端注入鎖定的頻率範圍為0.67 GHz至2.33 GHz,並在輸出端產生頻率範圍從2 GHz至7 GHz (111.1%) 的訊號。
    第二部分為利用電感串接耦合實現的考畢子QVCO,本架構由兩組p型電晶體交叉耦合VCO構成。晶片面積為1.124 × 1.2 mm2。在1.2 V供應電壓,功耗為3.7523mW,可調節頻率範圍為4.6 GHz至5.07 GHz。當頻率為4.59 GHz時,VCO的相位雜訊在1 MHz的頻率偏移下為 -122.72 dBc/Hz、FOM值為 -190.21 dBc/Hz。
    最後一部分設計了雙邊完全對稱之八字電感。此架構結合各一個p、n型電晶體產生負電阻,加上兩個可調節頻率之可變電容,本架構由四組子VCO所組成,並使用四組變壓器連接形成封閉式傳輸線,以耦合四個子震盪器。當提供電源為1.2 V時,功耗為5.84 m.W,可調節頻率範圍為8.536 GHz至10GHz。當頻率為8.536 GHz時,VCO的相位雜訊在1 MHz的頻率偏移下為 -122.4 dBc/Hz、FOM值為 -193.4 dBc/Hz。晶片面積為1.2 × 1.2 mm2。


    With the rapid advancement of technology, frequency synthesizers have become essential in today's society. Many products require high-speed transmission capabilities, including dividers, multipliers, and VCOs. These components are crucial for achieving low power consumption, high-frequency multiplication range, and low phase noise. This paper is divided into three parts, including a multiplier for dual-frequency architecture and two quadrature VCOs using different coupling methods. The chips were fabricated using the TSMC 0.18-μm CMOS mixed-signal and RF 1P6M technology and the TSMC 0.18-μm BICMOS mixed-signal SiGe general-purpose standard process FSG Al 3P6M 1.8&3.3V process technology.
    The first part is a 3x injection-locked multiplier for dual-frequency architecture, with a chip area of 0.901 × 1.2 mm². It utilizes double-ended injection to generate a doubled resonant frequency through two N-type transistors connected in series between the source and an inductor and finally outputs a tripled frequency signal from the drain. This structure uses two N-type transistors cross-coupled to form a negative resistance. At a total bias voltage of 1.2 V and tuning voltage of 0 V, the self-oscillation frequency is 3.78 GHz, and at a tuning voltage of 2 V, the self-oscillation frequency is 5.47 GHz. The power consumption is approximately 12.036 mW. When the injection signal power is 0 dBm, the frequency range for injection locking of the combined self-oscillation frequencies at the input is 0.67 GHz to 2.33 GHz, and the output signal has a frequency range from 2 GHz to 7 GHz (111.1%).
    The second part is a Colpitts quadrature voltage-controlled oscillator (QVCO) implemented using inductive coupling. This structure consists of two sets of P-type transistor cross-coupled VCOs. The chip area is 1.124 × 1.2 mm². At a supply voltage of 1.2 V., the power consumption is 3.7523 mW, and the frequency range is adjustable from 4.6 GHz to 5.07 GHz. At a frequency of 4.59 GHz, the p.ha.se noise of the VCO is -122.72 dBc/Hz at a 1 MHz frequency offset, and the FOM value is -190.21 dBc/Hz.
    The final part presents the design of a fully symmetrical eight-shaped inductor structure. This structure combines one P-type and one N-type transistor to generate negative resistance and two adjustable frequency variable capacitors. The structure consists of four sub-VCOs and uses four transformers connected to form a closed-loop transmission line to couple the four sub-oscillators. At a supply voltage of 1.2 V, the power consumption is 5.84 mW, and the frequency range is adjustable from 8.536 GHz to 10 GHz. At a frequency of 8.536 GHz, the phase noise of the VCO is -122.4 dBc/Hz at a 1 MHz frequency offset, and the FOM value is -193.4 dBc/Hz. The chip area is 1.2 × 1.2 mm².

    摘要 I ABSTRACT II 致謝 IV TABLE OF CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XIV CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Structure of Thesis 5 CHAPTER 2 FUNDAMENTAL CONCEPTS AND FACTORS TO CONSIDER IN DESIGNING VOLTAGE-CONTROLLED OSCILLATORS 6 2.1 Introduction 6 2.2 The Oscillators Theory 7 2.2.1 Feedback Oscillators (Two ports) 8 2.2.2 Negative Resistance and Resonator (One port) 10 2.3 Oscillator with LC-Tank 16 2.4 Oscillators of Colpitts and Hartley 22 2.5 Design Principles for a Voltage-Controlled Oscillator 24 2.5.1 Reference Indicators of a Voltage-Controlled Oscillator 25 2.5.1.1 Phase Noise 25 2.5.1.2 Tuning Range (Hz) 28 2.5.1.3 Consumption of Power (mW) 30 2.5.1.4 Harmonic/spurious (dBc) 32 2.5.1.5 Tuning Sensitivity (Hz/V) 33 2.5.1.6 Figure of Merit (FOM) 34 2.5.1.7 Quality Factor 34 2.6 Passive Components Design in VCO 37 2.6.1 Resistor Design 38 2.6.2 Capacitor Design 41 2.6.3 Inductor Design 44 2.6.3.1 Transformer Design 48 2.6.3.2 Skin Effect 51 2.6.3.3 Eddy Current 53 2.6.4 Varactor Design 54 CHAPTER 3 DUAL-BAND INJECTION-LOCKED FREQUENCY TRIPLER 56 3.1 Introduction 56 3.2 Design of Circuit 59 3.3 Results of Measurement and Discussion 64 CHAPTER 4 LINEARLY-TUNED QUADRATURE VCO WITH SUPERHARMONIC COUPLED P-CORE COMMON-DRAIN COLITTPS SUB-VCOS 74 4.1 Introduction 74 4.2 Design of Circuit 77 4.3 Results of Measurement and Discussion 93 CHAPTER 5 VCO WITH 8-SHAPED TRANSFORMER COUPLED TRANSMISSION-LINE 101 5.1 Introduction 101 5.2 Design of Circuit 103 5.3 Results of Measurement and Discussion 114 CHAPTER 6 CONCLUSIONS 119 REFERENCE 121

    [1] Behzad Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 2012
    [2] David M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2004.
    [3] B. Razavi, Design of integrated circuits for optical communications. John Wiley & Sons, 2012.
    [4] David B. Leeson, "Oscillator phase noise: A 50-year review," IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 63, no. 8, pp. 1208–1225, August 2016
    [5] Marwan Jadid, Christophe Delaveaud, Serge Bories, and Anthony Bellion, "Q factor-based electrically small antenna radiation efficiency measurement using the wheeler cap," IEEE Antennas Wireless Propag. Lett., vol. 22, no. 1, pp. 218–222, Jan. 2023.
    [6] Sang-Woong Yoon, S. Pinel, and J. Laskar, "High-performance 2-GHz CMOS LC VCO with high-Q embedded inductors using wiring metal layer in a package," IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 639–646, Aug. 2006.
    [7] Yaqian Sun, Wei Deng, Haikun Jia, Zhihua Wang, and Baoyong Chi, "A 4.4-GHz 193.2-dB FOM 8-shaped-inductor based LC-VCO using orthogonal-coupled triple-coil transformer," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 10, pp. 4028–4032, Oct. 2022.
    [8] Islam Mansour, Mohamed Aboualalaa, Adel Barakat, Ahmed Allam, Adel B. Abdel-Rahman, Mohammed Abo-Zahhad, Ramesh K. Pokharel, "Analysis and implementation of high-Q ct inductor for compact and wide- tuning range ku-band VCO," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 8, pp. 802–805, Aug. 2020.
    [9] S.-L. Jang, J.-J. Chen, C.-C. Liu and M.-H. Juang, ” Injection-locked frequency tripler with series-tuned resonator in 0.13 μm CMOS technology,” Microw. Optical Tech. Lett., pp.1107-1110, May, 2010.
    [10] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1877, Aug. 2008.
    [11] Z.Chen and P. Heydari, "An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS," 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 776-779.
    [12] D. M. Kang, H. S. Lee, S. H. Kim, T. H. Jang, C. W. Byeon, and C. S. Park, “A +3.0-dBm 115–129-GHz CMOS power-efficient injection-locked frequency tripler chain,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 5, pp. 508–511, May 2020.
    [13] C. Kuo and T. Yan, "A 60 GHz injection-locked frequency tripler with spur suppression," IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560-562, Oct. 2010.
    [14] A. Li, S. Zheng, J. Yin, H. C. Luong and X. Luo, "A CMOS 21-48GHz fractional-N synthesizer employing ultra-wideband injection-locked frequency multipliers," Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, 2013, pp. 1-4.
    [15] C.-C. Chen, J.-W. Wu and T.-F. Chiao, “Dual-injection sub-harmonic injection-locked frequency tripler,” IEEE Microwave Conference Proceedings, pp. 1214-1216, Dec. 2012.
    [16] L. Iotti, G. LaCaille and A. M. Niknejad, "A 57–74-GHz tail-switching injection-locked frequency tripler in 28-nm CMOS," IEEE J. Solid-State Circuits, vol. 2, no. 9, pp. 115-118, Sept. 2019.
    [17] H. -T. Huang, M. -H. Wu, Y. -H. Lin, T. -W. Huang and J. -H. Tsai, "A 3.7 mW 75-87-GHz injection-locked frequency tripler using bandwidth-enhanced transformer-coupled topology for automatic radar applications," 2015 European Microwave Conference (EuMC), pp. 399-402.
    [18] J. Zhang, H. Liu, C. Zhao and K. Kang, "A 22.8-to-43.2GHz tuning-less injection-locked frequency tripler using injection-current boosting with 76.4% locking range for multiband 5G applications," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 370-372.
    [19] W. -C. Lai, S. -L. Jang, H. -A. Yeh and M. -H. Juang, "A low-power injection-locked frequency tripler in 90 nm CMOS technology," 2020 IEEE 5th Int. Conf. Integrated Circuits and Microsystems (ICICM), Nanjing, China, 2020, pp. 96-100.
    [20] Y. H. Chang, “V-band CMOS injection-locked frequency tripler using differential harmonic current injection technique,” Analog Integr Circ Sig Process 109, 241–246, 2021.
    [21] S. -L. Jang, W. -C. Lai and R. -H. Lu, "Single-stage injection-locked frequency sixtupler in CMOS process," IEEE Access, vol. 10, pp. 40316-40323, 2022, doi: 10.1109/ACCESS.2022.3166127.
    [22] S. -L. Jang, H. -W. Lai, J. -Y. Sung and M. -H. Juang, "Injection-locked frequency tripler with boosted locking range," IEEE Microw. Wireless Tech. Lett., vol. 33, no. 4, pp. 423-426, April 2023, doi: 10.1109/LMWT.2022.3222130.
    [23] H. F. Zhou, K.M. Shum, and C. H. Chan, ” Wide locking range frequency tripler based on a dual-band VCO,”Electronics Lett. ,vol. 56, no. 21, 05 Nov 2020, pp. 1122 – 1124.
    [24] Y. H Chang, “V-band CMOS injection-locked frequency tripler using differential harmonic current injection technique, “ Analog Integr Circ Sig Process 109, 241–246 (2021). https://doi.org/10.1007/s10470-021-01930-y.
    [25] C.-C. Wang, Z. Chen, and P. Heydari, “ W-band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1307–1320, May 2012.
    [26] W. L. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
    [27] J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
    [28] K. W. Tang, S. Leung, N. Tieu, P. Schvan and S. P. Voinigescu, "Frequency scaling and topology comparison of millimeter-wave CMOS VCOs," 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, 2006, pp. 55-58.
    [29] W. L. Chan, H. Veenstra, and J. R. Long, “A 32 GHz quadrature LC-VCO in 0.25-μm SiGe BiCMOS technology,” Proc. IEEE ISSCC, Feb. 2005, pp. 538-539.
    [30] X. Li, S. Shekhar and D. J. Allstot, "Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005.
    [31] S. L. Jang, Y. H. Chuang, C.-K. Lee, and S.-H. Lee, “A 4.8 GHz low-phase noise quadrature Colpitts VCO,” 2006 International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 2006, pp. 1-4.
    [32] J. Kim, H. Song, K. Ajito, M. Yaita, and N. Kukutsu, “A 325 GHz quadrature voltage controlled oscillator with superharmonic-coupling,” IEEE Microw. Compon. Lett., vol. 23, no. 8, pp. 430–432, Aug. 2013.
    [33] E. Laskin et al., “A 165-GHz transceiver in SiGe technology,” IEEE J. Solid-State Circuits (JSSC), vol. 43, no. 5, pp. 1087–1100, May 2008.
    [34] S. Zihir, F. Tasdemir, T. Dinc and Y. Gurbuz, "A new resonant circuit for 2.45 GHz LC VCO with linear frequency tuning," 2011 6th European Microwave Integrated Circuit Conference, 2011, pp. 390-393.
    [35] Z. Chen et al., “Linear CMOS LC-VCO based on triple-coupled inductors and its application to 40-GHz phase-locked loop,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 2977–2989, Aug. 2017.
    [36] Y. Fu, L. Li, Y. Liao, X. Wang, Y. Shi, and D. Wang, “A 32-GHz nested-PLL-based FMCW modulator with 2.16-GHz bandwidth in a 65-nm CMOS process,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 7, pp. 1600–1609, Jul. 2020.
    [37] J. Mira, T. Divel, S. Ramet, J.-B. Begueret, and Y. Deval, “Distributed MOS varactor biasing for VCO gain equalization in 0.13 μm CMOS technology,” in Proc. IEEE RF Integr. Circuits Symp., Jun. 2004, pp. 131–134.
    [38] S. Zhihir, F.Tasdemir, T. Dinc, Y. Gurbuz, “A new resonant circuit for 2.45 GHz LC VCO with linear frequency tuning,” European Microwave Integrated Circuits Conference (EuMICC 2011), pp. 390-393, Oct. 2011.
    [39] K. O. Kenneth, N. Park, and D. J. Yang, “1/f noise of nMOS and pMOS transistors and their implications to design of voltage controlled oscillators,” in IEEE Radio Frequency Integrated Circuit Symp. Dig., Jun. 2002, pp. 59–62.
    [40] X. Ding, H. Yu, B. Yu, Z. Xu, and Q. J. Gu, “A superharmonic injection based G-band quadrature VCO in CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Aug. 2020, pp. 345–348.
    [41] L. Zhang, N. Kuo and A. M. Niknejad, “A 37.5–45 GHz superharmonic- coupled QVCO with tunable phase accuracy in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 10, pp. 2754-2764, Oct. 2019.
    [42] T. M. Hancock and G. M. Rebeiz, "A novel superharmonic coupling topology for quadrature oscillator design at 6 GHz," 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers, Forth Worth, TX, USA, 2004, pp. 285-288, doi: 10.1109/RFIC.2004.1320597.
    [43] J. Jing and Y. Xiaoming, “A wideband voltage-control oscillator with gain linearized varactor bank,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 5, pp. 905–910, May 2014.
    [44] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, and A. L. Lacaita, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003–1011, Aug. 2002.
    [45] E. Hegazi and A. Abidi, “Varactor characteristics, oscillator tuning curves, and AM-FM conversion,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1033–1039, Jun. 2003.
    [46] S. Levantino, C. Samori, A. Bonfanti, S. Gierkink, A. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5 GHz CMOS VCOs: Impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003–1011, Aug. 2002.
    [47] A. Hajimiri and T. H. Lee, “A general theory of phase noise in oscillator,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [48] S.-L. Jang, T.-S. Lee, C.-W. Hsue and C.-W. Chang, ” A low voltage and low power bottom-series coupled quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 11, 722-724, Nov., 2009.
    [49] Y. C. Chiang, T. F. Han and H. H. Hsu, “Design of a CMOS quadrature VCO with current reuse method”, Microw. Opti. Tech. Letts., Vol. 44, No.2, pp.202-204, Feb. 2005.
    [50] T.-H. Huang and Y.-R. Tseng, “A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reused and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 698-700, Oct. 2008.
    [51] D. Baek, T. Song, E. Yoon, and S. Hong, “8 GHz CMOS quadrature VCO using transformer-based tank," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 10, 446-448, Oct.2003.
    [52] C.-Y. Yang, C.-H. Chang,and J.-H. Weng, “A quadrature CMOS VCO using a distributed MIM poly-phase network,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 107–109, Feb. 2011.
    [53] S. -L. Jang, S. -H. Huang, C. -C. Liu and M. -H. Juang, "CMOS Colpitts quadrature VCO using the body injection-locked coupling technique," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 230-232, April 2009.
    [54] X. Ding, J. Wu, and C. Chen, “A low-power 0.6-V quadrature VCO with a coupling current reuse technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 2, pp. 202–206, Feb. 2019.
    [55] W. Lai, S. Jang and J. Syu, “Quadrature VCO via transformer coupled transmission line,” 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), Hangzhou, China, 2019, pp. 2-5.
    [56] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, July 2003.
    [57] N. Xi, F. Lin and T. Ye, "A low phase noise, high phase accuracy quadrature LC-VCO with dual-tail current biasing to insert reconfigurable phase delay," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 3, pp. 450-454, March 2020, doi: 10.1109/TCSII.2019.2923235.
    [58] F. Zhao and F. F. Dai, "A 0.6V quadrature VCO with optimized capacitive coupling for phase noise reduction," 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2011, pp. 1-4, doi: 10.1109/CICC.2011.6055305.
    [59] Ka’nan Wang, Renjie Tang, Zhen Zhao, Jing Zhang, Dan Li, Li Geng, Xiaoyan Gui, "A low gain variation LC-VCO with mutual inductive tuning for KVCO linearity compensation", IEEE Microw. Wireless Tech. Lett., vol.33, no.1, pp.55-58, 2023.
    [60] Y.-J. Moon, Y.-S. Roh, C.-Y. Jeong, and C. Yoo, “A 4.39–5.26 GHz LC-tank CMOS voltage-controlled oscillator with small VCO-gain variation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 524–526, Aug. 2009.
    [61] C.-W. Lim, H.-Y. Noh, and T.-Y. Yun, “Small VCO-gain variation adding a bias-shifted inversion-mode MOS varactor,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp. 395–397, Apr. 2017.
    [62] W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, and Z. Ren, “2.49-4.91 GHz wideband VCO with optimised 8-shaped inductor,” Electron. Lett., vol. 55, no. 1, pp. 55–57, Jan. 2019.
    [63] A. Mahmoud, L. Fanori, T. Mattsson, P. Caputa and P. Andreani “A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process,”Analog Integr Circ Sig Process 88, 391–399 (2016).
    [64] N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, "Twisted transformers for low coupling RF and mixed signal applications," 2009 IEEE International Symposium on Circuits and Systems, Taipei, 2009, pp. 429-432, doi: 10.1109/ISCAS.2009.5117777.
    [65] P. Wang et al., "A low phase-noise class-C VCO using novel 8-shaped transformer," 2015 IEEE Int. Symp. Circuits and Systems (ISCAS), Lisbon, 2015, pp. 886-889.
    [66] N. Itoh, Hideaki, Masuoka, S. -I. Fukase, K. -i. Hirashiki and M. Nagata, "Twisted inductor VCO for suppressing on-chip interferences," 2007 Asia-Pacific Microwave Conference, 2007, pp. 1-4, doi: 10.1109/APMC.2007.4554539.
    [67] C. Zhang, Z. Wang, Y. Zhao, and S. M. Park, “A 15 GHz, −182 dBc/Hz/mW FOM, rotary traveling wave VCO in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 206–208, Apr. 2012.
    [68] J. Wood, T. C. Edwards, and S. Lipa, “Rotary travelling-wave oscillator arrays: A new clock technology,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1654–1665, Nov. 2001.
    [69] Shehata, M. A., et al.,, " A 32–42-GHz RTWO-based frequency quadrupler achieving> 37 dBc harmonic rejection in 22-nm FD-SOI ", IEEE Solid-State Circuits Lett., vol.4, pp.72-75, 2021.
    [70] F. Rabbi, Z. Xie, and N.S. Dogan, “A 42/84-GHz multi-ring rotary traveling-wave oscillator design in 0.13-µm BiCMOS, “ Analog Integr Circ Sig Process 100, 577–592 (2019). https://doi.org/10.1007/s10470-019-01495-x.
    [71] Z. Bai, X. Zhou, R. D. Mason and G. Allan, " A 2-GHz pulse injection-locked rotary traveling-wave oscillator," IEEE Trans. Microwave Theory Tech., vol. 64, no. 6, pp. 1854-1866, June 2016, doi: 10.1109/TMTT.2016.2544755.
    [72] W. -C. Lai, S. -L. Jang and J. -W. Syu, "Quadrature VCO via transformer-coupled transmission line," 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 2019, pp. 2-5, doi: 10.1109/EMCCompo.2019.8919938.
    [73] W. -C. Lai, S. -L. Jang and J. -J. Wang, "Dual band quadrature VCO using switched-transformer coupling for wireless robot applications," 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2019, pp. 109-112, doi: 10.1109/ACIRS.2019.8935963.
    [74] S. L. Jang, S. S. Lin, C. W. Chang, and S. H. Hsu, ” A complementary cross-coupled quadrature VCO using ring inductor coupling method,” Microwave Opt Technol Lett (2012), 839–842.
    [75] Y. Y. Peng, X. P. Yu, J. M. Gu, W. M. Lim and W. Q. Sui, "An area-efficient CRLH (Composite Right/Left-Handed)-TL approach to the design of rotary traveling-wave oscillator," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 560-562, Oct. 2013, doi: 10.1109/LMWC.2013.2252424.
    [76] F. Ben Abdeljelil, W. Tatinian, L. Carpineto and G. Jacquemod, "Design of a CMOS 12 GHz rotary travelling wave oscillator with switched capacitor tuning," 2009 IEEE Radio Frequency Integrated Circuits Symposium, 2009, pp. 579-582, doi: 10.1109/RFIC.2009.5135608.
    [77] K. T. Ansari, T. N. Ross and C. Plett, ”Ku-band high output power multiphase rotary travelling-wave VCO in SiGe BiCMOS,” Microwave Integrated Circuits Conference (EuMIC), 2013 European, Nuremberg, 2013, pp. 97-100
    [78] X. Hu, Y. Dai, H. Zhang, J. Zhou, and K. Chen, " Rotary traveling-wave oscillator design using 0.18 μm CMOS," J. Semicond. 2010, 31(6).
    [79] K. T. Ansari, T. Ross, P. Gamand, and C. Plett, “Frequency domain phase shift measurement technique applied to a multiphase rotary traveling wave VCO,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 12, pp. 820–822, Dec. 2015.
    [80] M. A. Shehata, M. Keaveney, and R. B. Staszewski, “A distributed stubs technique to mitigate flicker noise upconversion in a mm-wave rotary traveling-wave oscillator,” IEEE J. Solid-State Circuits, vol. 56, no. 6, pp. 1745–1760, Jun. 2021.
    [81] M. A. Shehata, M. Keaveney, and R. B. Staszewski, “A 184.6-dBc/Hz FoM 100-kHz flicker phase noise corner 30-GHz rotary traveling-wave oscillator using distributed stubs in 22-nm FD-SOI,” IEEE Solid-State Circuits Lett., vol. 2, no. 9, pp. 103–106, Sep. 2019.
    [82] H. Li, Y. Shu, C. Pi, and X. Luo, "A 19.1–25.5-GHz compact dual-mode rotary traveling-wave oscillator with 195.4-dBc/Hz FoM", IEEE Microw. Wireless Compon. Lett., vol.32, no.11, pp.1347-1350, 2022.
    [83] J.-C. Chien and L.-H. Lu, “A 32-GHz rotary traveling-wave voltage controlled oscillator in 0.18-μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 724–726, Oct. 2007.
    [84] N. Nouri and J. F. Buckwalter, “A 45-GHz rotary-wave voltage controlled oscillator,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 383–392, Feb. 2011.
    [85] M. Vigilante and P. Reynaert, " A coupled-RTWO-based subharmonic receiver front end for 5G E-band backhaul links in 28-nm bulk CMOS," IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 2927-2938, Oct. 2018, doi: 10.1109/JSSC.2018.2861863.
    [86] S. Galeone, M. P. Kennedy, K. Ahmed, H. Shanan and M. Keaveney, " An eight-phase 40GHz RTWO in 28nm CMOS with phase noise reduction via head and tail filtering," 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 2019, pp. 306-309, doi: 10.1109/ICECS46596.2019.8965009.

    QR CODE