簡易檢索 / 詳目顯示

研究生: 黃朝鈿
Chou-Dian Huang
論文名稱: SUS 316L被覆Inconel 52M機械性質研究
Mechanical Properties of Inconel 52M cladded on Stainless Steel 316L
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 王朝正
Chaur-Jeng Wang
鄭慶民
Ching-Min Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 103
中文關鍵詞: 316L鎳基合金銲接惰性氣體電弧銲熱裂
外文關鍵詞: 316L, inconel, welding, GTAW, hot-cracking
相關次數: 點閱:225下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以惰性氣體電弧銲接(GTAW),將Inconel 52M被覆於SUS 316L上,研究管件進行異種金屬銲補時,被覆後母材與銲料間的機械性質、微觀組織、化學成分及裂縫敏感性,作為銲接時的參考。
    被覆後之試片以光學顯微鏡計算稀釋率,配合可調應變試驗機觀察銲件之熱裂敏感性,利用微小維克氏硬度試驗機分析試片硬度分佈,電子顯微鏡觀察被覆材之層間形貌,及能量分散光譜儀分析析出物及各層成分。
    實驗結果顯示入熱量越高,對母材的稀釋率就越高;相同應變量條件下,高入熱量產生之裂紋總長度將小於低入熱量產生之裂紋總長度,並且高入熱量的裂縫屬固化裂縫(Solidification Cracking)在裂縫形貌上為圓潤樹枝狀且有較高的硫磷含量,而低入熱量的裂縫屬失延裂縫(Ductility-Dip Cracking)裂縫型態較為尖銳;銲後機械強度部份,因為銲接時會有殘留應力,故銲後不論是銲料或是母材,均有硬度提升的跡象。


    This study clads Inconel 52M on SUS316L by Gas Tungsten Arc Welding. When processing dissimilar metal welding, we observe the region between base and filler metal for its mechanical properties, microstructure, chemical elements, and hot-cracking susceptibility, which serve as a reference for further welding.
    A microscope is used to calculate the dilution of specimen, and specimens’ hot-cracking susceptibility in varestraint test is assessed. Then we analyze the hardness distribution from specimen in Hardness Vickers. Finally, Scanning Electron Microscope is used to observe details between layers and Electron Dispersion Spectrum to get the elements of precipitation particle and each layer.
    The results show that the higher the heat input, the higher the dilution ratio of matrix. Under the same amount of strain, the total crack length for the higher heat input specimen is longer than the lower one. And the crack type of high heat input belongs to solidification cracking with smooth shape, and high S and P content. The crack which resulted from lower heat input is ductile-dip cracking, with a sharper crack surface. For the residual stress after welding, the hardness of weldment will both increase in filler and base metal.

    摘  要 I 誌  謝 II 第一章 前言 1 第二章 文獻回顧 3 2.1不銹鋼簡介 3 2.1.1不銹鋼的分類 4 2.1.2各種元素對不銹鋼及鎳基合金性質的影響 7 2.2銲接理論 10 2.2.1組成過冷與凝固 10 2.2.2沃斯田鐵不銹鋼之凝固過程 17 2.2.3肥粒鐵組織對沃斯田鐵不銹鋼的影響 20 2.3異種金屬銲接 23 2.4可調應變試驗原理 24 2.5裂紋的形成與種類 25 第三章 實驗方法 27 3. 1 實驗材料 27 3. 2 實驗參數設計 28 3. 3 覆銲層製作與稀釋率測定 30 3. 4 微硬度量測 31 3. 5 金相觀察 32 3. 6 可調應變試驗(Varestraint Test) 32 3. 7 側彎試驗 37 3. 8 電子顯微鏡觀察 39 第四章 實驗結果與討論 40 4. 1銲接參數測試與分析 40 4. 2銲接試片金相分析 50 4. 3微硬度試驗分析 56 4. 4可調應變試驗分析(裂紋敏感性試驗) 59 4. 5側彎試驗分析 72 4. 6 SEM觀察與EDS分析 74 第五章 結論 81 參考文獻 82 附錄 稀釋率計算剖面圖 86 作者簡介 89

    [1] 梁仲賢,壓水式核反應器材料的腐蝕與防治對策,核研季刊,26 期,p8-12,1999。
    [2] John C. Lippold, Greg Frederick, In52M Overlay Development for Surge Nozzle Weld Repairs, 8th International EPRI Conference, 2008.
    [3] R.E. Gold, D.L. Harrod R.G Aspden and A.J. Baum, Alloy 690 for Steam GeneratorTubing Applications, EPRI-Report, NP-6997-M, 1990.
    [4] John C. Lippold, Damian J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, Wiley, pp.2-5, 2005.
    [5] H. Nagano, K. Yamanaka, K. Kobayashi and M. Inoue, evelopment andManufacturing System od Alloy 690 Tubing for PWR Steam Generators, TheSumitomo Search, No.40, pp.57-70, 1989.
    [6] 郭聰源,鎳基690 合金銲接特性研究,國立成功大學博士論文, 1999 。
    [7] ASM, Metal Handbook, 10th Edition, Vol.2, pp.22-30, 1990
    [8] R.T. Holt and W.Wallace, Impurities and Trace Elements in Nickel-basedSuperalloys, International Metals Reviews, March, pp.I-24, 1976.
    [9] J.N. DuPont, c.Y. Robino, J.R. Michael, M.R. Nois and A.R. Marder, olidificationof Nb-Bearing Superalloys: Part I. Reaction Sequences, Metallurgical and MaterialsTransactions A, Nov., Vo1.29A, pp.2785-2796, 1998.
    [10] IN. DuPont, C.Y. Robino, A.R. Marder and M.R. Nois, olidification ofNb-BearingSuperalloys:Part II. Pseudoternary Solidification Surfaces, D Metallurgical andMaterials Transactions A, Nov., Vo1.29A, pp.2797-2806, 1998.
    [11] Y.D. He, Z.W. Li, H.B. Qi and W. Gao, Standard Free Energy Change of Formationper Unit Volume: A New Parameter for Evaluating Nucleation and Growth of Oxides,Sulphides, Carbides and Nitrides, Mat Res Innovat, YoU, pp. 157-160, 1997.
    [12] T. Takalo, N. Suutala, T. Moisio, Influence of Ferrite Content on itsMorphology in Some Austenitic Weld Metals, Metall. Trans. A, Vol.7A, No. 10, pp.1591-1592, 1976.
    [13] E. Folkhard, G. Rabensteiner, E. Pertender, H. Schabereiter, J. Tösch,Welding Metallurgy of Stainless Steels, Springer-Verlag, NewYork,1984
    [14] J.W. Oldfield, “Crevice Corrosion Resistance of Commercial andHigh-Purity Experimental Stainless Steels in Marine Environment-TheInfluence of N, Mn, and S”, Corrosion, Vol.46, 1990,p574.
    [15] A.J. Sedrik, “Effects of Alloy Composition and Microstructure on thePassivity of Stainless Steels”, Corrosion, Vol.42, 1986, p376.
    [16] R.M. Davison and J.D. Redmond, “Practice Guide to Using DuplexStainless Steel”, Materials Performance, Jan. 1990, p57.
    [17] R.E. Avery, “Resist Chlorides, Retain Strength and Ductility with DuplexStainless Steel Alloys”, Chemical Engineering Process, Mar. 1991, p.78.
    [18] N. Sridhar and J. Kolts, “Effects of Nitrogen on the Selective Dissolutionof a Duplex Stainless Steel”, Corrosion, Vol.43, 1987, p.646.
    [19] H. Tsuge, Y. Tarutani and T. Kudo, “The Effect of Nitrogen on the Localized Corrosion Resistance of Duplex Stainless Steel SimulatedWeldments”, Corrosion, Vol.44, 1988, p.305.
    [20] 陳俊凱,鋁合金6061與7075之銲接熱裂研究,國立台灣師範大學碩士論文,民國91年。
    [21] A. Ikeda, S. Mukai, M. Ueda, “Corrosion Behavior of 9 to 25% Cr Steelsin Wet CO2 Environments”, Corrosion, Vol. 41, p. 185, 1985.
    [22] S. Jana, “Effect of Heat Input on the HAZ Properties of TwoDuplexStainless Steels”, Journal of Material Processing Technology, Vol. 33, p.247, 1992.
    [23] J. Oredsson and S. Berndardsson, “Performance of High Alloy Austeniticand Duplex Stainless Steels in Sour Gas and Oil Environments”,Materials Performance, Jan. 1983, p.35.
    [24] B. Larsson, H. Gripenberg and R. Mellström, “Special Stainless Steels forTopside Equipment on offshore Platforms”, in ‘Stainless Steels 84’,Göteborg, 1984, p.452.
    [25] 曾光宏,周長彬,”銲接參數對304不銹鋼應變之影響”,機械技術雜誌,頁 144-150,民國88年。
    [26] 黃錦鐘,”不銹鋼的銲接(一)-不銹鋼的銲接凝固現象”,機械月刊,23卷,2期,頁227-233,民國86年。
    [27] J. A. Brooks and A. W. Thompson, “Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stanless Steel Welds”, International Materials Reviews, Vol. 36, No. 1, pp. 16-37, 1991
    [28] 19 T. Takalo, N. Suutala and T. Moisio, “ Austenitic Solidification Mode in Austenitic Stainless Steel Welds”, Metallurgical Transactions A, Vol. 10A, pp. 1173-1181, 1979.
    [29] P. Bilmes and A. Gonzalez, “Effect of Ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints”, Welding International, Vol.10, pp. 18-29, 1996.
    [30] M. Zhou, A. Needleman and R. J. Clifton, “Finite Element Simulations of Shear Localization in Plate Impact”, Journal of the Mechanics and Physics of Solids, Vol. 42, pp. 423-458, 1994.
    [31] ASTM, E407, Standard Practice for Microetching Metals and Alloys, Volume 03.01, 1996.
    [32] 鄭勝隆,鎳基690合金與SUS304L不銹鋼異種金屬銲接特性與微結構研究,國立成功大學博士論文,2003 。
    [33] Schaeffler, A. L., Metal Prog., 56: 680, 1949.
    [34] Delong,W. T., Weld. J., 53: 273s, 1974
    [35] Savage, W. F., and Lundin, C. D. The varestraint test, Welding Journal, vol 44(10): pp.433s-442s, 1965.
    [36] 鄭慶民,熱處理型鋁合金銲接性之研究,國立交通大學博士論文,2004。
    [37] 晁成虎,多重熱循環對超合金718 銲接性之影響,國立交通大學博士論文,1986 。
    [38] AWS standard D1.6, Structural Welding Code-Stainless steel, in: Annual Book of AWS Standards 1999.
    [39] Alber A.Sadek, Effect of new tungsten electrodes on hot cracking susceptibility, Material Letters 25, pp.229-234, 1995.
    [40] M.J. Cieslak, T.J. Headley, T. Kollie and A.D. Romig, Jr., A Melting and Solidification Study of Alloy 625, Metallurgical and Materials Transactions A, No.9, Vol.19A, pp.2319-2331, 1988.

    QR CODE