簡易檢索 / 詳目顯示

研究生: 楊福益
Dimas - Rizky Widagdyo
論文名稱: 提升鈦酸鍶之比表面積及導電度作為新一代固態氧化燃料電池之陽極材料
Improvement of Specific Surface Area and Conductivity of Strontium Titanate Ceramics as New Generation Anodes for Solid Oxide Fuel Cells
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Tuan Wei-Hsing
鍾仁傑
Ren-Jei Chung
顏怡文
Yen, Yee-Wen
林士剛
Shih-Kang Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 94
中文關鍵詞: 噴霧熱裂解法表面形貌導電率鈦酸鍶
外文關鍵詞: spray pyrolysis, morphology, platinum, conductivity, SrTiO3
相關次數: 點閱:280下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鍶為固態氧化物燃料電池中陽極常用材料之一,因其有優越的化學穩定性及熱穩定性,亦具備不易產生碳沉積之特性。因此吸引諸多關注及學者投入相關研究。然而,鈦酸鍶本身導電率及化學活性不佳,故透過改善導電率及化學活性來提升其於固態氧化物燃料電池之應用成為相當重要的議題。提升導電率及化學活性的方法有兩種:(1)讓鈦酸鍶具備介孔結構來提升其比表面積,使其能夠與氣體充分反應,進而提高轉換效率;(2)藉由添加微量鉑來提高其導電性及催化活性。本研究利用噴霧熱裂解法分別合成具有介孔結構與添加微量鉑摻雜之鈦酸鍶粉體,來增加其化學活性及導電率。藉由添加界面活性劑(Pluronic P123)作為造孔劑同時,可能會因界面活性劑團聚而導致比表面積下降。此外噴霧熱裂解法合成速度相當快速,可能造成鈦酸鍶粉體存在尚未反應完成之二次相。因此,本實驗藉由找出最佳添加界面活性劑濃度和合成溫度以及後續粉體處理之探討。由實驗結果發現,在相同界面活性劑濃度下,溫度為700°C下合成之鈦酸鍶粉體具有最高比表面積(103 m2/g)。由於高溫合成過程中,造成晶體成長,同時降低粉體中介孔的結構而導致比表面積下降。此外,鉑摻雜鈦酸鍶粉體進行燒結後之導電率發現,當鉑添加量為0.1 wt%,具有最高導電率(0.0056 S.cm-1)。由實驗結果指出,導電率與鉑添加量及多晶鈦酸鍶相對密度有關。


    Use of strontium titanate (SrTiO3) as an anode in solid oxide fuel cells has attracted considerable research attentions because of its excellent thermal stability, chemical stability, and high carbon deposition resistance. However, due to the low electrical conductivity and chemical activity of strontium titanate, improving the properties of SrTiO3 in order to reach requirements for anode material should be very important. There are two ways to improve chemical activity and electrical conductivity of SrTiO3. Firstly, producing mesoporous SrTiO3 increases the specific surface area for fuel cell reaction, which in turn increases the fuel-to-electricity conversion efficiency. Secondly, introducing platinum, as a good conductor and catalyst, has been chosen in order to increase the electrical conductivity and also chemical activity of strontium titanate for fuel cell reaction, which in turn increases the fuel-to-electricity conversion efficiency. For the methods, spray pyrolysis (SP) is advantageous because it entails short processing times and continuous production. In this study, we prepared two types of SrTiO3 particles, mesoporous SrTiO3 with high specific surface area also platinum-doped SrTiO3 to increase the electrical conductivity. For producing high specific surface area of SrTiO3, surfactants, as pore forming agents, may aggregate and reduce the specific surface area of particles. Consequently, the stable surfactant concentration range was investigated. In addition, the short calcination time of SP may cause incomplete decomposition and thus generate an unreacted phase; therefore, various calcination temperatures and an additional wash treatment were explored. Finally, SrTiO3 powder with the high specific surface area of 103 m2/g was obtained. Besides, we also prepared various platinum concentrations in platinum-doped SrTiO3 particles through spray pyrolysis (SP) and followed by die pressing method to produce bulk platinum-doped SrTiO3. The effect of platinum concentration and porosity to the electrical conductivity was investigated. Finally, bulk platinum-doped SrTiO3 sample with the electrical conductivity of 0.0056 S.cm-1, which is higher than pure SrTiO3, was obtained.

    Contents 中文摘要 I Abstract II Acknowledgements IV Contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 SrTiO3 and Previous Anode Materials 1 1.2 Electrical Conductivity Enhancement of SrTiO3 2 1.3 Fuel Conversion Efficiency Enhancement of SrTiO3 3 1.4 Promising Method to Produce SrTiO3 4 1.5 Purposes of This Study 6 Chapter 2 Literature Review 8 2.1 The Solid Oxide Fuel Cell 8 2.1.1 Advantages and Working Principle of SOFC 8 2.1.2 Anode Materials in SOFCs 11 2.1.3 Perovskite as Anode Material 13 2.2 Properties of Strontium Titanate (SrTiO3) 14 2.2.1 Crystal Structure of SrTiO3 14 2.2.2 SrTiO3 Physical Properties 17 2.2.3 Thermal Decomposition of SrTiO3 Precursor Solution 17 2.3 Study about Improving SrTiO3 Properties as Anode Material 19 2.3.1 Study about Improving Surface Area of SrTiO3 20 2.3.2 Study about Improving Electrical Conductivity of SrTiO3 22 2.4 Porous Ceramic Materials 23 2.4.1 Surfactants 24 2.4.1.1 Micelle Formation Mechanism 26 2.4.1.2 Non-ionic Triblock Copolymer (Pluronics) 27 2.4.2 Mesoporous Formation Mechanism of SrTiO3 28 2.5 Properties of Platinum 29 2.5.1 Crystal Structure of Platinum 30 2.5.2 Physical Properties of Platinum 31 2.5.3 Platinum Dissolved in Aqua-Regia Solution 32 2.6 Ultrasonic Spray Pyrolysis Method 33 2.6.1 Ultrasonic Spray Pyrolysis Equipment 35 2.6.2 Particle Formation Mechanism 37 Chapter 3 Experimental Procedure 40 3.1 Experimental Design 40 3.2 Materials and Instrumentations 43 3.3 Materials Preparation 46 3.3.1 Producing High Specific Surface Area of SrTiO3 Powders 46 3.3.2 Producing High Electrical Conductivity of SrTiO3 Powders 48 3.4 Materials Characterization 49 3.4.1 Dynamic Light Scattering (DLS) 50 3.4.2 X-Ray Diffractometer (XRD) 51 3.4.3 Field Emission Scanning Electron Microscope (FE-SEM) 52 3.4.4 Back-Scattered Electron Detector (BSD) 53 3.4.5 Field Emission Transmission Electron Microscope (FE-TEM) 55 3.4.6 Nitrogen Adsorption/Desorption Apparatus 55 3.4.7 Relative Density Analysis 56 3.4.8 Electron Impedance Spectroscopy (EIS) 56 Chapter 4 Results 59 4.1 Results About Improving Specific Surface Area of SrTiO3 59 4.2 Results About Improving Electrical Conductivity of SrTiO3 67 Chapter 5 Discussion 74 5.1 Discussion About Improving Specific Surface Area of SrTiO3 74 5.2 Discussion About Improving Electrical Conductivity of SrTiO3 77 Chapter 6 Conclusions 82 6.1 Improving Specific Surface Area of SrTiO3 82 6.2 Improving Electrical Conductivity of SrTiO3 83 Chapter 7 Future Work 84 References 86

    1. Malghe, Y.S., Nanosized SrTiO3 powder from oxalate precursor microwave aided synthesis and thermal characterization. Journal of Thermal Analysis and Calorimetry, 2010. 102: p. 831-836.
    2. Voigts, F., T. Damjanovi, G. Borchardt, C. Argirusis, and W. Maus-Friedrichs, Synthesis and characterization of strontium titanate nanoparticles as potential high temperature oxygen sensor material. Journal of Nanomaterials, 2006: p. 1-6.
    3. Rocca, A., A. Licciulli, M. Politi, and D. Diso, Rare Earth-Doped SrTiO3 Perovskite Formation from Xerogels. International Scholarly Research Network (ISRN) Ceramics, 2012: p. 1-6.
    4. Chang, C. H. and Y. H. Shen, Synthesis and characterization of chromium doped SrTiO3 photocatalyst. Materials Letters, 2006. 60: p. 129-132.
    5. Pontes, F.M., E.J.H. Lee, E.R. Leite, and E. Longo, High dielectric constant of SrTiO3 thin films prepared by chemical process. Journal of Material Science, 2000. 35: p. 4783-4787.
    6. Li, X., H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, and Z. Zhu, Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs. Journal of Power Sources, 2007. 166: p. 47-52.
    7. Minh, N.Q., Ceramic fuel cells. Journal of the American Ceramic Society, 1993. 76(3): p. 563-588.
    8. McIntosh, S. and R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chemical reviews, 2004. 104(10): p. 4845-4866.
    9. Toebes, M.L., J.H. Bitter, A.J. Van Dillen, and K.P. de Jong, Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catalysis today, 2002. 76(1): p. 33-42.
    10. Kim, T., G. Liu, M. Boaro, S. I. Lee, J.M. Vohs, R.J. Gorte, O. Al-Madhi, and B. Dabbousi, A study of carbon formation and prevention in hydrocarbon-fueled SOFC. Journal of Power Sources, 2006. 155(2): p. 231-238.
    11. Huang, X., H. Zhao, W. Qiu, W. Wu, and X. Li, Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials. Energy Conversion and Management, 2007. 48(5): p. 1678-1682.
    12. Matsuzaki, Y. and I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ionics, 2000. 132(3): p. 261-269.
    13. Waldbillig, D., A. Wood, and D.G. Ivey, Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes. Solid State Ionics, 2005. 176(9): p. 847-859.
    14. Blennow, P., K.K. Hansen, L.R. Wallenberg, and M. Mogensen, Effects of Sr/Ti-ratio in SrTiO3-based SOFC anodes investigated by the use of cone-shaped electrodes. Electrochimica Acta, 2006. 52: p. 1651–1661.
    15. Laosiripojana, N., W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, and S. Assabumrungrat, Reviews on solid oxide fuel cells technology. Engineering Journal, 2009. 13(1): p. 65-83.
    16. Moriga, T., Y. Nomura, M. Fujikawa, Y. Higashi, K. Murai, and M. Mori, La-doped SrTiO3 perovskites as SOFC interconnectors, in EMN Summer Meeting2014: Cancun, Mexico.
    17. Marina, O.A., N.L. Canfield, and J.W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 2002. 149(1): p. 21-28.
    18. Hui, S. and A. Petric, Electrical properties of yttrium-doped strontium titanate under reducing conditions. Journal of The Electrochemical Society, 2002. 149(1): p. J1-J10.
    19. Slater, P.R., D.P. Fagg, and J.T. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. Journal of Materials Chemistry, 1997. 7(12): p. 2495-2498.
    20. Hoffman, J.M. Materials Engineering: Little-known facts about precious metals. 2008 [cited 2016.
    21. Firth, J., S. Gentry, and A. Jones, Oxidation reactions on platinum catalysts. Journal of Catalysis, 1974. 34(1): p. 159-161.
    22. Ito, M. and D. Furumoto, Effects of noble metal addition on microstructure and thermoelectric properties of NaxCo2O4. Journal of Alloys and Compounds, 2008. 450(1): p. 494-498.
    23. Gilbert, B., H. Zhang, F. Huang, M.P. Finnegan, G.A. Waychunas, and J.F. Banfield, Special phase transformation and crystal growth pathways observed in nanoparticles. Geochemical Transactions, 2003. 4(4): p. 20-27.
    24. Puangpetch, T., T. Sreethawong, S. Chavadej, and S. Yoshikawa. Synthesis and Photocatalytic Activity in Methyl Orange Degradation of Mesoporous SrTiO3 Photocatalyst Prepared by Surfactant-assisted Templating Sol-Gel Method. in The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006). 2006.
    25. Zou, F., Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiao, and P.P. Edwards, Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity. Chemical Communications, 2012. 48(68): p. 8514-8516.
    26. Zhang, Y., G. Xu, X. Wei, Z. Ren, Y. Liu, G. Shen, and G. Han, Hydrothermal synthesis, characterization and formation mechanism of self-assembled mesoporous SrTiO3 spheres assisted with Na2SiO3•9H2O. CrystEngComm, 2012. 14(10): p. 3702-3707.
    27. Wei, X., G. Xu, Z. Ren, Y. Wang, G. Shen, and G. Han, Synthesis and Characterization of Mesoporous SrTiO3 Spheres via a Poly Vinyl Alcohol-Assisted Hydrothermal Route. Journal of the American Ceramic Society, 2008. 91(1): p. 299-302.
    28. Ren, Y., Z. Ma, and P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. Chemical Society Reviews, 2012. 41(14): p. 4909-4927.
    29. Li, X., H. Zhao, N. Xu, X. Zhou, C. Zhang, and N. Chen, Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells. International journal of hydrogen energy, 2009. 34(15): p. 6407-6414.
    30. Li, X., H. Zhao, F. Gao, N. Chen, and N. Xu, La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells. Electrochemistry Communications, 2008. 10(10): p. 1567-1570.
    31. Li, X., H. Zhao, F. Gao, Z. Zhu, N. Chen, and W. Shen, Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3−δ as a potential SOFC anode. Solid State Ionics, 2008. 179(27): p. 1588-1592.
    32. Choi, H., D. Kim, S.P. Yoon, J. Han, S. Ha, and J. Kim, Production of molybdenum oxide particles with high yield by ultrasonic spray pyrolysis and their catalytic activity toward partial oxidation of n-dodecane. Journal of Analytical and Applied Pyrolysis, 2015. 112: p. 276-283.
    33. Skrabalak, S.E. and K.S. Suslick, Porous MoS2 synthesized by ultrasonic spray pyrolysis. Journal of the American Chemical Society, 2005. 127(28): p. 9990-9991.
    34. Eslamian, M. and N. Ashgriz, Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying. Powder technology, 2006. 167(3): p. 149-159.
    35. Okuyama, K. and I.W. Lenggoro, Preparation of nanoparticles via spray route. Chemical engineering science, 2003. 58(3): p. 537-547.
    36. Tzeng, W.L. and S.J. Shih, Template-Free Synthesis of Hollow Porous Strontium Titanate Particles. Journal of the American Ceramic Society, 2015. 98(2): p. 386-391.
    37. Tao, S. and J.T. Irvine, Optimization of mixed conducting properties of Y2O3–ZrO2–TiO2 and Sc2O3–Y2O3–ZrO2–TiO2 solid solutions as potential SOFC anode materials. Journal of solid state chemistry, 2002. 165(1): p. 12-18.
    38. Singhal, S.C., Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002. 152: p. 405-410.
    39. Stambouli, A.B. and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002. 6(5): p. 433-455.
    40. Penwell, W., Doped Perovskite Materials for Solid Oxide Fuel Cell (SOFC) Anodes and Electrochemical Oxygen Sensors, 2014, Université d'Ottawa/University of Ottawa.
    41. Smith, B.H., Development of Solid Oxide Fuel Cell Electrodes with High Conductivity and Enhanced Redox Stability. 2010.
    42. Sun, C. and U. Stimming, Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 2007. 171(2): p. 247-260.
    43. Shih, S.J., Nanometre-scaled structural studies of strontium titanate by electron microscopy and microanalysis, 2009, University of Oxford.
    44. Bandura, A.V., R.A. Evarestov, and Y.F. Zhukovskii, Energetic stability and photocatalytic activity of SrTiO3 nanowires: ab initio simulations. Rsc Advances, 2015. 5(31): p. 24115-24125.
    45. Atkinson, A., S. Barnett, R.J. Gorte, J. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, and J. Vohs, Advanced anodes for high-temperature fuel cells. Nature materials, 2004. 3(1): p. 17-27.
    46. Sudireddy, B.R., P. Blennow, and K.A. Nielsen, Microstructural and electrical characterization of Nb-doped SrTiO3–YSZ composites for solid oxide cell electrodes. Solid State Ionics, 2012. 216: p. 44-49.
    47. Bae, C., J.G. Park, Y.H. Kim, and H. Jeon, Abnormal Grain Growth of Niobium-Doped Strontium Titanate Ceramics. Journal of the American Ceramic Society, 1998. 81(11): p. 3005-3009.
    48. Dokiya, M., SOFC system and technology. Solid State Ionics, 2002. 152: p. 383-392.
    49. Yu, H.C., F. Zhao, A.V. Virkar, and K.Z. Fung, Electrochemical characterization and performance evaluation of intermediate temperature solid oxide fuel cell with La0.75Sr0.25CuO2.5−δ cathode. Journal of Power Sources, 2005. 152: p. 22-26.
    50. Ruiz-Morales, J.C., J. Canales Vázquez, C. Savaniu, D. Marrero López, W. Zhou, and J.T. Irvine, Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006. 439(7076): p. 568-571.
    51. Okazaki, A. and M. Kawaminami, Lattice constant of strontium titanate at low temperatures. Materials Research Bulletin, 1973. 8(5): p. 545-550.
    52. Guan, Y., Y. Gong, W. Li, J. Gelb, L. Zhang, G. Liu, X. Zhang, X. Song, C. Xia, and Y. Xiong, Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography. Journal of Power Sources, 2011. 196(24): p. 10601-10605.
    53. Chan, N.H., R. Sharma, and D.M. Smyth, Nonstoichiometry in SrTiO3. Journal of The Electrochemical Society, 1981. 128(8): p. 1762-1769.
    54. Leapman, R., L. Grunes, and P. Fejes, Study of the L 23 edges in the 3 d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Physical Review B, 1982. 26(2): p. 614.
    55. Rahmati, B., J. Fleig, E. Bischoff, W. Sigle, J. Maier, and M. Rühle, Microstructural studies on the reoxidation behavior of Nb-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 2005. 25(12): p. 2211-2214.
    56. Lytle, F.W., X‐Ray Diffractometry of Low-Temperature Phase Transformations in Strontium Titanate. Journal of Applied Physics, 1964. 35(7): p. 2212-2215.
    57. Tzeng, W.L., T.L. Sun, and S.J. Shih, Grain boundary engineering by shape-control of SrTiO3 nanocrystals. Advanced Powder Technology, 2015.
    58. Heifets, E., R. Eglitis, E. Kotomin, J. Maier, and G. Borstel, Ab initio modeling of surface structure for SrTiO3 perovskite crystals. Physical Review B, 2001. 64(23): p. 235417.
    59. Von Alfthan, S., N.A. Benedek, L. Chen, A. Chua, D. Cockayne, K.J. Dudeck, C. Elsässer, M.W. Finnis, C.T. Koch, and B. Rahmati, The structure of grain boundaries in strontium titanate: theory, simulation, and electron microscopy. Annual Review of Materials Research, 2010. 40: p. 557-599.
    60. Pojani, A., F. Finocchi, and C. Noguera, Polarity on the SrTiO3 (111) and (110) surfaces. Surface Science, 1999. 442(2): p. 179-198.
    61. Eglitis, R., ab initio calculations of SrTiO3 (111) surfaces, in Nanodevices and Nanomaterials for Ecological Security2012, Springer. p. 125-132.
    62. Shih, S.J. and W.L. Tzeng, Manipulation of morphology of strontium titanate particles by spray pyrolysis. Powder technology, 2014. 264: p. 291-297.
    63. Kao, C.F. and W.D. Yang, Preparation and electrical characterisation of strontium titanate ceramic from titanyl acylate precursor in strong alkaline solution. Ceramics International, 1996. 22(1): p. 57-66.
    64. Borgwardt, R.H. and K.R. Bruce, Effect of specific surface area on the reactivity of CaO with SO2. AIChE journal, 1986. 32(2): p. 239-246.
    65. Li, G.J., X.H. Zhang, and S. Kawi, Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sensors and Actuators B: Chemical, 1999. 60(1): p. 64-70.
    66. Laosiripojana, N. and S. Assabumrungrat, The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures. Chemical engineering science, 2006. 61(8): p. 2540-2549.
    67. Puangpetch, T., T. Sreethawong, S. Chavadej, and S. Yoshikawa, Synthesis and photocatalytic activity in methyl orange degradation of mesoporous SrTiO3 photocatalyst prepared by surfactant-assisted templating sol-gel method., in Sustainable Energy and Environment2006: Bangkok, Thailand.
    68. Zou, F., Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiao, and P.P. Edwards, Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity. Chemical Communications, 2012. 48: p. 8514–8516.
    69. Zhang, Y., G. Xu, X. Wei, Z. Ren, Y. Liu, G. Shen, and G. Han, Hydrothermal synthesis, characterization and formation mechanism of self-assembled mesoporous SrTiO3 spheres assisted with Na2SiO3.9H2O. CrystEngComm, 2012. 14: p. 3702-3707.
    70. Wei, X., G. Xu, Z. Ren, Y. Wang, G. Shen, and G. Han, Synthesis and characterization of mesoporous SrTiO3 spheres via a poly vinyl alcohol-assisted hydrothermal route. Journal of The American Ceramic Society, 2008. 91(1): p. 299-302.
    71. Ren, Y., Z. Ma, and P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. Chemical Society Reviews, 2012. 41: p. 4909–4927.
    72. Hui, S. and A. Petric, Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. Journal of the European Ceramic Society, 2002. 22(9): p. 1673-1681.
    73. Ciesla, U. and F. Schüth, Ordered mesoporous materials. Microporous and Mesoporous Materials, 1999. 27(2): p. 131-149.
    74. Sing, K., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure and applied chemistry, 1982. 54(11): p. 2201-2218.
    75. Vallet Regi, M., A. Ramila, R. Del Real, and J. Pérez Pariente, A new property of MCM-41: drug delivery system. Chemistry of Materials, 2001. 13(2): p. 308-311.
    76. Brinker, C.J., Porous inorganic materials. Current Opinion in Solid State and Materials Science, 1996. 1(6): p. 798-805.
    77. Kruk, M., M. Jaroniec, and A. Sayari, Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir, 1997. 13(23): p. 6267-6273.
    78. Ma, C.Y., Z. Mu, J.J. Li, Y.G. Jin, J. Cheng, G.Q. Lu, Z.P. Hao, and S.Z. Qiao, Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society, 2010. 132(8): p. 2608-2613.
    79. Devi, G.S., T. Hyodo, Y. Shimizu, and M. Egashira, Synthesis of mesoporous TiO2-based powders and their gas-sensing properties. Sensors and Actuators B: Chemical, 2002. 87(1): p. 122-129.
    80. Johansson, E.M., Controlling the pore size and morphology of mesoporous silica. 2010.
    81. Myers, D., Surfaces, interfaces and colloids1990: Wiley Vch New York etc.
    82. Wan, Y., Y. Shi, and D. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chemical Communications, 2007(9): p. 897-926.
    83. Kunjappu, J.T., Essays in Ink Chemistry:(for Paints and Coatings Too)2001: Nova Science Pub Incorporated.
    84. Beck, J., J. Vartuli, W.J. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D.H. Olson, and E. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): p. 10834-10843.
    85. Zhao, D., J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science, 1998. 279(5350): p. 548-552.
    86. Bagshaw, S.A., E. Prouzet, and T.J. Pinnavaia, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. science, 1995. 269(5228): p. 1242-1244.
    87. Zhao, L., Y. Yu, L. Song, M. Ruan, X. Hu, and A. Larbot, Preparation of mesoporous titania film using nonionic triblock copolymer as surfactant template. Applied Catalysis A: General, 2004. 263(2): p. 171-177.
    88. Gild, J., Physical Characteristics and Morphology of Platinum Nanocrystals on Single Crystal Strontium Titanate. 2015.
    89. Baghalha, M., H.K. Gh, and H.R. Mortaheb, Kinetics of platinum extraction from spent reforming catalysts in aqua-regia solutions. Hydrometallurgy, 2009. 95(3): p. 247-253.
    90. Massucci, M., S.L. Clegg, and P. Brimblecombe, Equilibrium partial pressures, thermodynamic properties of aqueous and solid phases, and Cl2 production from aqueous HCl and HNO3 and their mixtures. The Journal of Physical Chemistry A, 1999. 103(21): p. 4209-4226.
    91. Schweizer, A. and G. Kerr, Thermal decomposition of hexachloroplatinic acid. Inorganic Chemistry, 1978. 17(8): p. 2326-2327.
    92. Jayanthi, G., S. Zhang, and G.L. Messing, Modeling of solid particle formation during solution aerosol thermolysis: the evaporation stage. Aerosol Science and Technology, 1993. 19(4): p. 478-490.
    93. Kodas, T.T.T. and M.J. Hampden-Smith, Aerosol processing of materials1999: Wiley-Vch.
    94. Lenggoro, I.W., T. Hata, F. Iskandar, M.M. Lunden, and K. Okuyama, An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. Journal of materials research, 2000. 15(03): p. 733-743.
    95. Eslamian, M., M. Ahmed, and N. Ashgriz, Modelling of nanoparticle formation during spray pyrolysis. Nanotechnology, 2006. 17(6): p. 1674.
    96. Messing, G.L., S.-C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
    97. Charlesworth, D.H. and W.R. Marshall, Evaporation from drops containing dissolved solids. AIChE Journal, 1960. 6(1): p. 9-23.
    98. Gardner, T.J. and G.L. Messing, Magnesium salt decomposition and morphological development during evaporative decomposition of solutions. Thermochimica Acta, 1984. 78(1–3): p. 17-27.
    99. Gardner, T.J., D.W. Sproson, and G.L. Messing, Precursor Chemistry Effects on Development of Particulate Morphology During Evaporative Decomposition of Solutions. MRS Online Proceedings Library, 1984. 32: p. null-null.
    100. Hampden Smith, M.J. and T.T. Kodas, The chemistry of metal CVD1994: VCH.
    101. Shih, S.J. and I.C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder technology, 2013. 237: p. 436-441.
    102. Chen, C., T. Tseng, S. Tsai, C.K. Lin, and H. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceramics International, 2008. 34(2): p. 409-416.
    103. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
    104. Chou, Y.J., Microstructure and bioactivity correlation of one-step synthesized bioactive glass. Material Science and Engineering, Vol. Master, National Taiwan University of Science and Technology, Taipei, Taiwan, 2013.
    105. Clement, C.F. and I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment, 1999. 33(3): p. 489-499.
    106. Shih, S.J., L.Y.S. Chang, C.Y. Chen, K.B. Borisenko, and D.J. Cockayne, Nanoscale yttrium distribution in yttrium-doped ceria powder. Journal of Nanoparticle Research, 2009. 11(8): p. 2145-2152.
    107. Shih, S.J., Y.Y. Wu, C.Y. Chen, and C.Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. Journal of Nanoparticle Research, 2012. 14(5): p. 1-9.
    108. Bales, B.L. and M. Almgren, Fluorescence quenching of pyrene by copper (II) in sodium dodecyl sulfate micelles. Effect of micelle size as controlled by surfactant concentration. The Journal of Physical Chemistry, 1995. 99(41): p. 15153-15162.
    109. Barakat, M. and M. Mahmoud, Recovery of platinum from spent catalyst. Hydrometallurgy, 2004. 72(3): p. 179-184.
    110. Chatterjee, P. and S. Hazra, pH-dependent size and structural transition in P123 micelle induced gold nanoparticles. Rsc Advances, 2015. 5(85): p. 69765-69775.
    111. Shih, S.J., C. Bishop, and D.J. Cockayne, Distribution of Σ3 misorientations in polycrystalline strontium titanate. Journal of the European Ceramic Society, 2009. 29(14): p. 3023-3029.
    112. Shih, S.J., M.B. Park, and D.J. Cockayne, The interpretation of indexing of high Σ CSL grain boundaries from ceramics. Journal of microscopy, 2007. 227(3): p. 309-314.
    113. Martin, M.C. and M.L. Mecartney, Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics, 2003. 161(1): p. 67-79.
    114. Thompson, A.W., Calculation of true volume grain diameter. Metallography, 1972. 5(4): p. 366-369.
    115. University, P. Scanning Electron Microscope. 2014; Available from: https://www.purdue.edu/ehps/rem/rs/sem.htm.
    116. Mačković, M., A. Hoppe, R. Detsch, D. Mohn, W. Stark, E. Spiecker, and A. Boccaccini, Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. Journal of Nanoparticle Research, 2012. 14(7): p. 1-22.
    117. Chou, Y.J., C.J. Shih, and S.J. Shih, Texture evaluation of sol-gel derived mesoporous bioactive glass. Applied Mechanics and Materials, 2013. 284-287: p. 230-234.
    118. Reli, M., K. Koci, V. Matejka, P. Kovar, and L. Obalova, Effect of calcination temperature and calcination time on the kaolinite-TiO2 composite for photocatalytic reduction of CO2. GeoScience Engineering, 2012. 58(4): p. 10-22.
    119. Chen, B.R., C. George, Y. Lin, L. Hu, L. Crosby, X. Hu, P.C. Stair, L.D. Marks, K.R. Poeppelmeier, and R.P. Van Duyne, Morphology and oxidation state of ALD-grown Pd nanoparticles on TiO2-and SrO-terminated SrTiO3 nanocuboids. Surface Science, 2015.
    120. Abrantes, J., J. Labrincha, and J. Frade, Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. Journal of the European Ceramic Society, 2000. 20(10): p. 1603-1609.
    121. Guo, X., Size dependent grain-boundary conductivity in doped zirconia. Computational Materials Science, 2001. 20(2): p. 168-176.
    122. Chang, C.H. and Y.H. Shen, Synthesis and characterization of chromium doped SrTiO3 photocatalyst. Materials Letters, 2006. 60(1): p. 129-132.
    123. Gibson, I., G. Dransfield, and J. Irvine, Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. Journal of materials science, 1998. 33(17): p. 4297-4305.

    QR CODE