簡易檢索 / 詳目顯示

研究生: 湯浩德
Hao-De Tang
論文名稱: 應用於筆電轉軸環境之緊湊配置 天線解耦合技術開發
Development of Decoupling Technique for Compactly Displaced Antennas Using Notebook Hinge Structure
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 周良哲
Liang-Zhe Zhou
劉適嘉
Shi-Jia Liu
陳晏笙
Yan-Sheng Chen
馬自莊
Zi-Zhuang Ma
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: WLAN倒F天線隔離度天線解偶合天線分集技術傳導電流
外文關鍵詞: WLAN, Inverted-F Antenna, Isolation, Antenna decoupling technique, Antenna diversity, Conduction emission current
相關次數: 點閱:476下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年推出的各式行動裝置平台,像是平板電腦、家用小型基地台、智慧型手機,和筆記型電腦等,皆須整合多種無線通訊協定,而各種平台皆有特定的天線需求。對於筆記型電腦而言,已有多天線應用的需求。在多天線系統中,如何維持天線間的隔離度便是一大重要的研究課題。
    本論文第一部份提出一種應用於筆電轉軸槽孔上的解耦合方法,藉由電流相位相消的原理,將天線放在筆電轉軸槽孔上,並將轉軸槽孔的長度設計在天線操作頻率之波長的整數倍,可讓天線的傳導電流流過轉軸到達另一支天線時正好達到相位相反而相消,提升兩支天線間的隔離度,兩支天線同時可在極小於操作頻率波長的距離內,維持天線原有的傳輸性能。在此部分,吾人對轉軸槽孔與天線頻率波長的關係進行探討與分析,同時對於此方法的理論以及可應用的頻率進行參數分析,並針對轉軸槽孔在非天線頻率之波長的整數倍時,提出幾種調整的方法。
    第二部份是將此解耦合方法應用於不同款式的雙頻天線上,檢視此方法是否仍具有解耦合的效果。首先吾人設計一款原創的WLAN雙頻IFA天線,並將其應用於此解耦合方法中。天線在低頻的隔離度表現良好,與單頻IFA天線的隔離度表現相似,於高頻的隔離度表現尚佳,在部分頻率具解耦合效果,部分頻率則可維持一定的隔離度。同時可藉由調整天線間距,將隔離度進一步地提升。接著嘗試將此解耦合方法應用於另外四款不同型式且已知的雙頻天線上,測試其解耦合效果。對於傳導電流沿著板邊流動的天線型式,其低頻隔離度可被大幅度地改善,使相鄰天線能在極小於波長的距離內,仍能保持其傳輸性能。


    Modern mobile devices, such as tablets, access points, smart phones and notebooks, need to incorporate a variety of communication protocols. Different platforms may require dissimilar antenna characteristics. For notebooks, support for MIMO operation has already been a must. Mobile devices therefore need to install multiple antennas with good isolation performance.
    In the first part of this study, a decoupling technique, which utilizes the notebook hinge region, has been developed. We found that by setting the hinge slot length as multiple of wavelengths, a decoupling null can be created. This is due to cancellation of conduction emission currents around the hinge slot. The isolation and the performance of the antennas can be improved with this technique. As a result, the distance between two types antennas can be extremely reduced and the radiation performance is not perturbed.
    In the second part of this study, different antenna types have been tested with this decoupling technique to exam the applicability of this technique. At first, a dual-band inverted-F antenna has been designed. In general, good isolation can be achieved with the 2.4 GHz band, while some tuning in antenna spacing or displacement may be needed to achieve decoupling in the 5 GHz band. We also applied this technique to the existing designs. For antennas that utilize the ground edge for radiation, the proposed technique can improve antenna isolation significantly and the two antennas can be place in a close distance.

    摘要 I Abstract II 目錄 III 圖目錄 V 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文組織 4 第二章 解耦合技術分析 5 2.1.1 解耦合技術簡介 5 2.1.2 筆記型電腦的環境簡介 7 2.1.3 單頻IFA天線的耦合量分析 8 2.2.1 單頻天線放置在模擬筆電環境之分析 10 2.2.2 轉軸槽孔長度與工作頻率波長的關係 14 2.2.3 天線在轉軸槽上的位置與不同筆電角度對解耦合的效果分析 18 2.2.4 筆電轉軸槽孔間距與解耦合前後場型分析 22 2.2.5 應用於不同頻段的天線的解耦合方法 26 2.2.6 轉軸槽孔長度不為天線頻率之波長整數倍的解耦合辦法 28 2.2.7 結合IFA天線與Slot天線提升解耦合效果 33 2.2.8 在轉軸槽孔上放入不同頻段的天線 38 2.2.9 單頻天線實作驗證 41 2.3 小結 43 第三章 緊密排列天線之寬槽孔與天線在非筆電轉軸槽孔解耦合技術應用 44 3.1 前言 44 3.2.1 雙頻IFA天線設計與解耦合技術應用 44 3.2.2 雙頻IFA天線實作驗證與封包相關係數計算 50 3.3.1 筆電槽孔解耦合技術於現有的WLAN天線的應用 54 3.3.2 雙天線架構的輻射耦合量分析 59 3.4 在非筆電轉軸槽孔環境下的解耦合應用 65 3.5 小結 71 第四章 結論 72 參考文獻 74

    [1] [Online] https://en.wikipedia.org/wiki/List_of_WLAN_channels
    [2] K.-L. Wong and C.-H. Chang, “Surface-mountable EMC monopole chip antenna for WLAN operation,” IEEE Trans. Antennas Propag., vol. 54, no. 4, pp. 1100-1104, Apr. 2006.
    [3] Q. Luo, J. R. Pereira, and H. M. Salgado, “Compact printed monopole antenna with chip inductor for WLAN,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 880-883, Sep. 2011.
    [4] S.-H. Yeh, W.-C. Yang, W.-K. Su, and C.-Y. Wu, “2.4/5.2 GHz dual-WLAN unequal-arms dipoles antenna with a chip inductor for omni-directional radiation patterns,” IEEE Region 10 Conference, pp. 1-4, Oct. 2007.
    [5] C.-L. Ciou and W.-S. Chen, “Dipole antenna with a spiral strip for WLAN applications,” IEEE International Workshop on Electromagnetics(iWEM), pp. 131-134, Aug. 2013.
    [6] H.-W. Liu, S.-Y. Lin, and C.-F. Yang, “Compact inverted-F antenna with meander shorting strip for laptop computer WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 540-543, May 2011.
    [7] C. H. See, R. A. Abd-Alhameed, D. Zhou, and P. S. Excell, “Dual-frequency planar inverted F-L-Antenna(PIFLA) for WLAN and short range communication systems,” IEEE Trans. Antennas Propag., vol. 56, no. 10, pp. 3318-3320, Oct. 2008.
    [8] Y.-H. Zhou, X.-Y. H, D.-Y. Shen and H. Yuna, “Metasurface for high isolation in MIMO antenna,’’ IEEE MTT-S International Wireless Symposium (IWS), pp. 1-4, June 2018
    [9] [Online]http://www.antenna-theory.com/definitions/mutualcoupling.php
    [10] W. C. Y. Lee, “Antenna spacing requirement for a mobile radio hasestation diversity,” Bell Syst. Tech. J., Vol. 50, pp. 1859-1876, July/Aug. 1971.
    [11] S. Dossche, J. Romeu and S. Blanch, “Matching Network for A Spatial Diversity Antenna System,’’ 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications, Vol.1, pp. 427-431, Jan. 2005
    [12] M. Gallo et al., “A broadband pattern diversity annular slot antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1596–1600, Mar. 2012.
    [13] S. Vinoth Kumar and A. R. Harish ,“Two-port 3D printed trefoil torus knot antenna with pattern diversity” 2018 3rd International Con. on Microwave and Photonics (ICMAP), pp. 1-2, May 2018
    [14] Huey-Ru Chuang, Liang-Chen Kuo,Chi-Chang Lin, Wen-Tzu Chen “A 2.4 GHz polarization-diversity planar printed dipole antenna for WLAN and wireless communication applications” Technical feature, pp. 1-2.
    [15] Y. Li, Z. Zhang, W. Chen, Z. Feng, and M. F. Iskander, “A dual-polarization slot antenna using a compact CPW feeding structure,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 191–194, 2010.
    [16] Y. -L. Ban, S. Y. Zhi, C. K. Kang and J. Le-Wei Li, “Decoupled planar WWAN antennas with T-shaped protruded ground for smartphone applications,” IEEE Antennas and Wireless Propag. Lett., vol.13, pp.483-486, Mar. 2014
    [17] L. H. Weng, Y. C. Guo, X. W. Shi, and X. Q. Chen, “An overview on defected ground structure,” Progress In Electromagnetics Research B, Vol. 7, 173–189, 2008
    [18] J. Pei, A.G. Wang, S. Gao, ‘‘Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications’’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 298–301
    [19] M.M. Fakharian, P. Rezaei, A.A. Orouji, ‘‘Microstip antenna with a reconfigurable dumbbell-shaped defected ground plane for DCS-1800 and PCS-1900,’’ Proc. IEEE Antennas and Propagation Society Int. Symp., 2013, pp. 576–577
    [20] A. A. R. Saad, Khaled, E.E.M., Salem, D.A.: ‘‘Wideband slotted planar antenna with defected ground structure’’. Proc. PIERS, 2011, pp. 1092–1097
    [21] A. Diallo, C. Luxey, P. L. Thuc, R. Staraj, and G. Kossiavas, “Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS 1800 and UMTS bands,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3063–3074, Nov. 2006.
    [22] Y. Wang and Z. Du, "A wideband printed dual-antenna system with a novel neutralization line for mobile terminals, " IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1428-1431, 2013.
    [23] S.-C. Chen, Y.-T. Lee, C.-W. Liou and P.-W. Wu, “Monopole antenna integrated with keyboard ground plane in a laptop computer,” IEEE 5th Asia-Pacific Con. on Antennas and Propag. (APCAP), pp.115-116, Feb. 2017
    [24] S.-H. Chang and W.-J. Liao, “A compact 3D antenna with comprehensive LTE band coverage for use on notebook hinge,” IEEE Asia-Pacific Con. on Antennas and Propag., pp.142-143, Oct. 2012
    [25] Z.-W. Hu, C.-H. Wei, D.-F. Mo and Y.-Y. Chang, “Coupled-fed antenna design integrated with the hinge of notebook,” IEEE 5th Asia-Pacific Con. on Antennas and Propa. (APCAP), pp.231-232, Feb. 2017
    [26] S.-C. Chen, Y.-C. Tsou and C -C. Huang, “LTE/WWAN monopole antenna integration with hinge slot region in the laptop computer,” IEEE 5th Asia-Pacific Con. on Antennas and Propa., pp. 113-114, Feb.2017
    [27] C.-Y.-D. Sim, C.-C. Chen, X. Y. Zhang and Y.-L Lee, “Very small-size uniplanar printed monopole antenna for dual-band WLAN laptop computer applications,” IEEE Trans. on Antennas and Propag., vol. 65, no.6, pp. 2916-2922, Apr. 2017
    [28] J. Y. Deng, J. Y. Li, L. Y. Zhao and L. X. Guo, “A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications,” IEEE Antennas and Wireless Propag. Lett., vol.16, pp. 2270-2273, June 2017
    [29] S. -C. Chen, J. -Yi. Sze and K. -J. Chuang, “Small-size WLAN MIMO antenna array with high isolation for laptop computer application,” Asia-Pacific Microwave Con., pp. 986-988, Mar. 2015
    [30] L.-Y. Chen and K.-L. Wong, “2.4/5.2/5.8 GHz WLAN antenna for the ultrabook computer with metal housing,” Asia Pacific Microwave Con Proceedings, pp. 322-324, Jan. 2013

    QR CODE