簡易檢索 / 詳目顯示

研究生: 林昆霖
KUN-LIN LIN
論文名稱: 弱監督式學習雙層卷積網路⽤於 HER2 擴增檢測與⾻髓細胞分析
Weakly supervised bilayer convolutional network in application to the examination of HER2 amplification and bone marrow analysis
指導教授: 王靖維
Ching-Wei Wang
口試委員: 王靖維
Ching-Wei Wang
趙載光
Tai-Kuang Chao
許維君
Wei-Chun HSU
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 69
中文關鍵詞: 弱監督式學習深度學習第二型人類表皮生長因子受體 (HER2)乳癌標靶治療
外文關鍵詞: Weakly supervised learning, Deep learning, HER2 overexpression, Breast cancer target therapy
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二型人類表皮生長因子受體 (human epidermal growth factor receptor 2, HER2)的過度表現被視為轉移性乳癌的預後標記,並且能用來預測 HER2 標靶藥物的療效。雙色原位雜交法 (Dual in situ hybridization, DISH) 已經由美國食品藥物管理局(FDA) 批准為判斷 HER2 是否過度表現的方法。但此方法在應用上仍面臨幾項挑戰。重疊的細胞及模糊的細胞邊界使分割個別的 HER2 相關細胞變得困難,且HER2 相關細胞的外觀變異度很大。另外,手工的標註通常只針對具備高度信心的細胞作標註,使的一些沒有被標註的 HER2 相關細胞被誤認為背景,可能會降低模型的表現。為了解決以上問題,我們提出一個二階段弱監督式學習的框架來精準的衡量是否有 HER2 的過度表現。
    為了證實該模型的有效性,該模型在兩種不同放大倍率的 DISH 數據集上作驗證。在第一組的數據集中,影像數據達到 accuracy 96.78% , precision97.77%,recall 84.86%, Dice Index 90.77% ; 在第二組的數據集中,影像數據達到 accuracy 96.43% , precision 97.82%, recall 87.14%, Dice Index 91.87% 。除此之外,該提出方法的表現優於其他 15 種比較方法,進一步證實該方法在兩組數據集上針對 HER2是否為過度表現能提供優良的結果,並在醫學上輔助 HER2 標靶治療。


    Overexpression of human epidermal growth factor receptor 2 (HER2/ERBB2) is
    identified as a prognostic marker in metastatic breast cancer and a predictor to determine the effects of HER2­targeted drugs. Accurate HER2 testing is essential in determining the optimal treatment for metastatic breast cancer patients. Brightfield dual in situ hybridization (DISH) was recently authorized by the United States Food and Drug Administration for the assessment of HER2 overexpression, which however is a challenging task due to a variety of reasons. Firstly, the presence of touching clustered and overlapping cells render it difficult for segmentation of individual HER2 related cells, which must contain both HER2 and CEN17 signals. Secondly, the fuzzy cell boundaries make the localization of each HER2 related cell challenging. Thirdly, variation in the appearance of HER2 related cells is large. Fourthly, as manual annotations are usually made on targets with high confidence, causing sparsely labeled data with some unlabeled HER2 related cells defined as background, this will seriously confuse fully supervised AI learning and cause poor model outcomes.
    To deal with all issues mentioned above, we propose a two­stage weakly supervised
    deep learning framework for accurate and robust assessment of HER2 overexpression.
    The effectiveness and robustness of the proposed deep learning framework is evaluated
    on two DISH datasets acquired at two different magnifications. The experimental results demonstrate that the proposed deep learning framework achieves an accuracy of
    96.78±1.25, precision of 97.77±3.09, recall of 84.86±5.83 and Dice Index of 90.77±4.1
    and an accuracy of 96.43±2.67, precision of 97.82±3.99, recall of 87.14±10.17 and Dice
    Index of 91.87±6.51 for segmentation of HER2 overexpression on the two experimental
    datasets, respectively. Furthermore, the proposed deep learning framework outperforms
    15 state­ of­the­art benchmark methods by a significant margin (P < 0.001). Importantly,
    the experimental results demonstrate that the proposed deep learning framework generates promising results for segmentation of HER2 overexpression on both datasets, making the proposed framework feasible to assist in guiding HER2 targeted therapies.

    目 錄 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 研究目標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 論文貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 樣本製備及染色方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 雙色原位雜交法 (Dual in situ hybridization,DISH) . . . . . . . . 5 2.1.2 骨髓之病理全域影像 (Bone Marrow Whole slide image, WSI) . 6 2.2 研究相關方法應用之文獻 . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 語義分割 (semantic segmentation) 相關方法 . . . . . . . . . . . 8 2.2.2 實例分割 (instance segmentation) 相關方法 . . . . . . . . . . . 9 2.2.3 soft sampling 相關技術 . . . . . . . . . . . . . . . . . . . . . . 10 第三章 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 弱監督式偵測器 (Weakly Supervised Detector) . . . . . . . . . . . . . . 13 3.1.1 Jaccard­based soft sampling weighted loss function . . . . . . . 14 3.1.2 dual layer filtered negative instance sampling strategy . . . . . . 16 3.1.3 data augmentation and normalization to prevent overfitting . . . . 18 3.1.4 data oriented learning rate adjustment mechanism . . . . . . . . . 19 3.2 遮罩模組 (Occlusion­Perceive mask module) . . . . . . . . . . . . . . . 20 3.3 HER2 訊號及 CEN17 訊號偵測 . . . . . . . . . . . . . . . . . . . . . . 26 第四章 實驗設計與結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1 實驗資料集介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 實驗設備介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 數據分析方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.1 DISH breast dataset 1 之數據及影像結果分析 . . . . . . . . . . 35 4.3.2 DISH breast dataset 2 之數據及影像結果分析 . . . . . . . . . . 39 4.3.3 BoneMarrow 之數據 . . . . . . . . . . . . . . . . . . . . . . . . 43 第五章 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 未來發展 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 圖 目 錄 圖 1.1 典型的 DISH 影像示意圖。 . . . . . . . . . . . . . . . . . . . . . . 2 圖 2.1 DISH 染色處理後的切片圖 . . . . . . . . . . . . . . . . . . . . . . 5 圖 2.2 骨髓圖片 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 圖 2.3 本研究測試在骨髓的 16 種細胞上 . . . . . . . . . . . . . . . . . . 7 圖 3.1 詳細架構圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 圖 3.2 DISH 影像 HER2 信號和 CEN17 訊號偵測圖 . . . . . . . . . . . . 28 圖 3.3 DISH 影像 HER2 信號和 CEN17 訊號偵測顆數示意圖 ID. (HER2, CEN17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 圖 4.1 混淆矩陣 (confusion matrix) . . . . . . . . . . . . . . . . . . . . . . 33 圖 4.2 本研究應用於 DISH breast dataset 1 的數據分析結果盒狀圖 . . . . 36 圖 4.3 本研究應用於 DISH breast dataset 1 的影像結果 . . . . . . . . . . . 38 圖 4.4 本研究應用於 DISH breast dataset 2 的數據分析結果盒狀圖 . . . . 40 圖 4.5 本研究應用於 DISH breast dataset 2 的影像結果 . . . . . . . . . . . 42 圖 4.6 本研究應用於 BoneMarrow 的混淆矩陣 . . . . . . . . . . . . . . . 46 圖 4.7 本研究應用於 Bone Marrow 的影像結果 . . . . . . . . . . . . . . . 47 圖 4.8 本研究應用於 Bone Marrow 的影像結果 (Normal) . . . . . . . . . 48 圖 4.9 本研究應用於 Bone Marrow 的影像結果 (Disease) . . . . . . . . . . 48 表 目 錄 表 3­1 Weakly Supervised Detector 的骨幹架構 (Backbone)。 . . . . . . . . 22 表 3­2 Weakly Supervised Detector 的分支架構 . . . . . . . . . . . . . . . . 23 表 3­3 Occlusion­Perceive mask module 的骨幹架構 (Backbone) . . . . . . 24 表 3­4 Occlusion­Perceive Mask Module 的 boundary detection branch 架構 25 表 3­5 Occlusion­Perceive Mask Module 的 mask detection branch 架構 . . . 25 表 4­1 DISH 資料集詳細資料表 . . . . . . . . . . . . . . . . . . . . . . . . 31 表 4­2 Bone Marrow 資料集詳細資料表 . . . . . . . . . . . . . . . . . . . 31 表 4­3 多類別骨髓數據集之標註顆數 . . . . . . . . . . . . . . . . . . . . 32 表 4­4 本研究於 DISH dataset 1 的量化分析結果表 . . . . . . . . . . . . . 35 表 4­5 本研究於 DISH dataset 1 的 LSD 統計分析結果表 . . . . . . . . . . 37 表 4­6 本研究於 DISH dataset 2 的量化分析結果表 . . . . . . . . . . . . . 39 表 4­7 本研究於 DISH dataset 2 的 LSD 統計分析結果表 . . . . . . . . . . 41 表 4­8 本研究於 BoneMarrow 的量化分析結果表 (Overall) . . . . . . . . . 43 表 4­9 本研究於 BoneMarrow 的量化分析結果表 (Normal) . . . . . . . . . 44 表 4­10 本研究於 BoneMarrow 的量化分析結果表 (Disease) . . . . . . . . 45

    參 考 文 獻
    [1] R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, et al., “Cancer statistics, 2021,”
    Ca Cancer J Clin, vol. 71, no. 1, pp. 7–33, 2021.
    [2] A. C. Wolff, M. E. H. Hammond, J. N. Schwartz, K. L. Hagerty, D. C. Allred, R. J.
    Cote, M. Dowsett, P. L. Fitzgibbons, W. M. Hanna, A. Langer, et al., “American society of clinical oncology/college of american pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Archives
    of pathology & laboratory medicine, vol. 131, no. 1, pp. 18–43, 2007.
    [3] D. J. Slamon, B. Leyland­Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde,
    T. Fleming, W. Eiermann, J. Wolter, M. Pegram, et al., “Use of chemotherapy plus
    a monoclonal antibody against her2 for metastatic breast cancer that overexpresses
    her2,” New England journal of medicine, vol. 344, no. 11, pp. 783–792, 2001.
    [4] I. Smith, M. Procter, R. D. Gelber, S. Guillaume, A. Feyereislova, M. Dowsett,
    A. Goldhirsch, M. Untch, G. Mariani, J. Baselga, et al., “2­year follow­up of
    trastuzumab after adjuvant chemotherapy in her2­positive breast cancer: a randomised controlled trial,” The lancet, vol. 369, no. 9555, pp. 29–36, 2007.
    [5] G. V. P. Okaly, D. Panwar, K. B. Lingappa, P. Kumari, A. Anand, P. Kumar, M. H.
    Chikkalingaiah, R. V. Kumar, et al., “Fish and her2/neu equivocal immunohistochemistry in breast carcinoma,” Indian journal of cancer, vol. 56, no. 2, p. 119,
    2019.
    [6] F.­M. Chen, L.­J. Huang, F. Ou­Yang, J.­Y. Kan, L.­C. Kao, and M.­F. Hou,
    “Activation of mitochondrial unfolded protein response is associated with her2­
    overexpression breast cancer,” Breast Cancer Research and Treatment, vol. 183,
    no. 1, pp. 61–70, 2020.
    [7] F. F. Gao, D. J. Dabbs, K. L. Cooper, and R. Bhargava, “Bright­field her2 dual in
    situ hybridization (dish) assay vs fluorescence in situ hybridization (fish) focused
    study of immunohistochemical 2+ cases,” American journal of clinical pathology,
    vol. 141, no. 1, pp. 102–110, 2014.
    [8] D. Zhang, J. Han, G. Cheng, and M.­H. Yang, “Weakly supervised object localization and detection: A survey,” IEEE transactions on pattern analysis and machine
    intelligence, vol. 44, no. 9, pp. 5866–5885, 2021.
    [9] H. Lee and W.­K. Jeong, “Scribble2label: Scribble­supervised cell segmentation
    via self­generating pseudo­labels with consistency,” in International Conference
    on Medical Image Computing and Computer­Assisted Intervention, pp. 14–23,
    Springer, 2020.
    [10] K. Nishimura, C. Wang, K. Watanabe, R. Bise, et al., “Weakly supervised cell instance segmentation under various conditions,” Medical Image Analysis, vol. 73,
    p. 102182, 2021.
    [11] S.­H. Lee, W. Erber, A. Porwit, M. Tomonaga, L. Peterson, and I. C. S. I. Hematology, “Icsh guidelines for the standardization of bone marrow specimens and reports,”
    International journal of laboratory hematology, vol. 30, no. 5, pp. 349–364, 2008.
    [12] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and
    pattern recognition, pp. 3431–3440, 2015.
    [13] H. Chen, X. Qi, L. Yu, and P.­A. Heng, “Dcan: deep contour­aware networks for
    accurate gland segmentation,” in Proceedings of the IEEE conference on Computer
    Vision and Pattern Recognition, pp. 2487–2496, 2016.
    [14] Y.­J. Lin, T.­K. Chao, M.­A. Khalil, Y.­C. Lee, D.­Z. Hong, J.­J. Wu, and C.­W.
    Wang, “Deep learning fast screening approach on cytological whole slides for thyroid
    cancer diagnosis,” Cancers, vol. 13, no. 15, p. 3891, 2021.
    [15] M.­A. Khalil, Y.­C. Lee, H.­C. Lien, Y.­M. Jeng, and C.­W. Wang, “Fast segmentation of metastatic foci in h&e whole­slide images for breast cancer diagnosis,”
    Diagnostics, vol. 12, no. 4, p. 990, 2022.
    [16] C.­W. Wang, Y.­A. Liou, Y.­J. Lin, C.­C. Chang, P.­H. Chu, Y.­C. Lee, C.­H. Wang,
    and T.­K. Chao, “Artificial intelligence­assisted fast screening cervical high grade
    squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning,” Scientific Reports, vol. 11, no. 1, pp. 1–14, 2021.
    [17] C.­W. Wang, Y.­C. Lee, C.­C. Chang, Y.­J. Lin, Y.­A. Liou, P.­C. Hsu, C.­C. Chang,
    A.­K.­O. Sai, C.­H. Wang, and T.­K. Chao, “A weakly supervised deep learning
    method for guiding ovarian cancer treatment and identifying an effective biomarker,”
    Cancers, vol. 14, no. 7, p. 1651, 2022.
    [18] C.­W. Wang, C.­C. Chang, Y.­C. Lee, Y.­J. Lin, S.­C. Lo, P.­C. Hsu, Y.­A. Liou,
    C.­H. Wang, and T.­K. Chao, “Weakly supervised deep learning for prediction of
    treatment effectiveness on ovarian cancer from histopathology images,” Computerized Medical Imaging and Graphics, vol. 99, p. 102093, 2022.
    [19] O. Ronneberger, P. Fischer, and T. Brox, “U­net: Convolutional networks for
    biomedical image segmentation,” in International Conference on Medical image
    computing and computer­assisted intervention, pp. 234–241, Springer, 2015.
    [20] T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm,
    J. Deubner, Z. Jäckel, K. Seiwald, et al., “U­net: deep learning for cell counting,
    detection, and morphometry,” Nature methods, vol. 16, no. 1, pp. 67–70, 2019.
    [21] M. Zhang, X. Li, M. Xu, and Q. Li, “Automated semantic segmentation of red blood
    cells for sickle cell disease,” IEEE Journal of Biomedical and Health Informatics,
    vol. 24, no. 11, pp. 3095–3102, 2020.
    [22] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
    encoder­decoder architecture for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
    [23] L.­C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder­decoder with
    atrous separable convolution for semantic image segmentation,” in Proceedings of
    the European conference on computer vision (ECCV), pp. 801–818, 2018.
    [24] C.­W. Wang, K.­Y. Lin, Y.­J. Lin, M.­A. Khalil, K.­L. Chu, and T.­K. Chao, “A soft
    label deep learning to assist breast cancer target therapy and thyroid cancer diagnosis,” Cancers, vol. 14, no. 21, p. 5312, 2022.
    [25] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception­v4, inception­resnet
    and the impact of residual connections on learning,” in Thirty­first AAAI conference
    on artificial intelligence, 2017.
    [26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
    [27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
    in Proceedings of the IEEE conference on computer vision and pattern recognition,
    pp. 770–778, 2016.
    [28] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
    Proceedings of the IEEE conference on computer vision and pattern recognition,
    pp. 1251–1258, 2017.
    [29] N. Lessmann, B. Van Ginneken, P. A. De Jong, and I. Išgum, “Iterative fully convolutional neural networks for automatic vertebra segmentation and identification,”
    Medical image analysis, vol. 53, pp. 142–155, 2019.
    [30] S. Wang, K. He, D. Nie, S. Zhou, Y. Gao, and D. Shen, “Ct male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation,” Medical image analysis, vol. 54, pp. 168–178, 2019.
    [31] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r­cnn,” in Proceedings of the
    IEEE international conference on computer vision, pp. 2961–2969, 2017.
    [32] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic and fast instance segmentation,” Advances in Neural information processing systems, vol. 33,
    pp. 17721–17732, 2020.
    [33] L. Ke, Y.­W. Tai, and C.­K. Tang, “Deep occlusion­aware instance segmentation with
    overlapping bilayers,” in Proceedings of the IEEE/CVF Conference on Computer
    Vision and Pattern Recognition (CVPR), pp. 4019–4028, June 2021.
    [34] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of
    the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022,
    2021.
    [35] E. Upschulte, S. Harmeling, K. Amunts, and T. Dickscheid, “Contour proposal networks for biomedical instance segmentation,” Medical Image Analysis, p. 102371,
    2022.
    [36] H. Chen, X. Qi, L. Yu, Q. Dou, J. Qin, and P.­A. Heng, “Dcan: Deep contour­aware
    networks for object instance segmentation from histology images,” Medical image
    analysis, vol. 36, pp. 135–146, 2017.
    [37] Z. Wu, N. Bodla, B. Singh, M. Najibi, R. Chellappa, and L. S. Davis, “Soft sampling
    for robust object detection,” CoRR, vol. abs/1806.06986, 2018.
    [38] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu­El­Haija, A. Kuznetsova, H. Rom,
    J. Uijlings, S. Popov, A. Veit, et al., “Openimages: A public dataset for large­scale
    multi­label and multi­class image classification,” Dataset available from https://
    github. com/openimages, vol. 2, no. 3, p. 18, 2017.
    [39] C.­W. Wang, S.­C. Huang, M.­A. Khalil, D.­Z. Hong, S.­I. Meng, and Y.­C. Lee,
    “CW­NET for multitype cell detection and classification in bone marrow examination and mitotic figure examination,” Bioinformatics, vol. 39, 05 2023. btad344.
    [40] C.­W. Wang, M.­A. Khalil, Y.­J. Lin, Y.­C. Lee, and T.­K. Chao, “Detection of erbb2
    and cen17 signals in fluorescent in situ hybridization and dual in situ hybridization
    for guiding breast cancer her2 target therapy,” Artificial Intelligence in Medicine,
    vol. 141, p. 102568, 2023.
    [41] Z. Cai and N. Vasconcelos, “Cascade r­cnn: high quality object detection and instance segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 5, pp. 1483–1498, 2019.
    [42] J. Deng, W. Dong, R. Socher, L.­J. Li, K. Li, and L. Fei­Fei, “Imagenet: A largescale hierarchical image database,” in 2009 IEEE conference on computer vision and
    pattern recognition, pp. 248–255, IEEE, 2009.
    [43] C.­W. Wang, S.­M. Ka, and A. Chen, “Robust image registration of biological microscopic images,” Scientific reports, vol. 4, no. 1, pp. 1–12, 2014.
    [44] C.­W. Wang and H.­C. Chen, “Improved image alignment method in application to
    x­ray images and biological images,” Bioinformatics, vol. 29, no. 15, pp. 1879–1887,
    2013.
    [45] A. C. Ruifrok, D. A. Johnston, et al., “Quantification of histochemical staining by color deconvolution,” Analytical and quantitative cytology and histology, vol. 23,
    no. 4, pp. 291–299, 2001.
    [46] P. K. Gajaria, S. Tambe, T. Pai, A. Patil, S. B. Desai, T. M. Shet, et al., “Dual­color
    dual­hapten in situ hybridization (d­dish)–comparison with fluorescence in situ hybridization (fish) for her2/neu testing in breast cancer,” Indian Journal of Pathology
    and Microbiology, vol. 63, no. 2, p. 194, 2020.
    [47] E. J. A. Bowles, R. Wellman, H. S. Feigelson, A. A. Onitilo, A. N. Freedman, T. Delate, L. A. Allen, L. Nekhlyudov, K. A. Goddard, R. L. Davis, et al., “Risk of heart
    failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study,” Journal of the National Cancer Institute, vol. 104, no. 17,pp. 1293–1305, 2012.
    [48] N. Mohan, J. Jiang, M. Dokmanovic, and W. J. Wu, “Trastuzumab­mediated cardiotoxicity: current understanding, challenges, and frontiers,” Antibody therapeutics, vol. 1, no. 1, pp. 13–17, 2018.
    [49] S. Kunte, J. Abraham, and A. J. Montero, “Novel her2–targeted therapies for her2–
    positive metastatic breast cancer,” Cancer, vol. 126, no. 19, pp. 4278–4288, 2020.
    [50] M. F. Press, J. A. Seoane, C. Curtis, E. Quinaux, R. Guzman, G. Sauter, W. Eiermann,
    J. R. Mackey, N. Robert, T. Pienkowski, et al., “Assessment of erbb2/her2 status in
    her2­equivocal breast cancers by fish and 2013/2014 asco­cap guidelines,” JAMA
    oncology, vol. 5, no. 3, pp. 366–375, 2019.
    [51] F. Meric­Bernstam, A. M. Johnson, E. E. I. Dumbrava, K. Raghav, K. Balaji,
    M. Bhatt, R. K. Murthy, J. Rodon, and S. A. Piha­Paul, “Advances in her2­targeted
    therapy: novel agents and opportunities beyond breast and gastric cancer,” Clinical
    Cancer Research, vol. 25, no. 7, pp. 2033–2041, 2019.

    無法下載圖示
    全文公開日期 2073/08/10 (校外網路)
    全文公開日期 2073/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE