簡易檢索 / 詳目顯示

研究生: 李高逵
Gao-Kuei Li
論文名稱: 新型開顱手術機器人之運動設計
Kinematic Design of a Novel Robotic Manipulator for Craniotomy
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 李志中
Jyh-Jone Lee
蔡高岳
Kao-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 134
中文關鍵詞: 開顱手術手術機器人開顱機構運動設計
外文關鍵詞: Craniotomy, Surgical robot, Craniotomy mechanism, Kinematic design
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

手術機器人學(Surgical robotics)乃近年來廣受矚目的機器人技術,雖然目前已有多種不同手術導向的機器人被提出,應用於腦神經外科開顱手術的機器人研發工作卻仍相當少見,且尚未有專門針對開顱手術動作需求所設計的專用型機器人。本研究之目的,即針對開顱手術的運動需求,設計一部專用於開顱動作的機器人機構。本研究所設計之新型開顱機構具有以下幾點特色:
(1) 與現有串聯式六軸開顱機器人相較,本設計使用串並聯混合結構,機器人具有較佳的強健性(Robustness),可提供較穩定的開顱鑽孔與切削力;
(2) 受機構本身之構造限制,由機器人夾持的開顱刀具可隨時與顱骨表面保持垂直,提供最佳的頭骨鑽孔與切削角度;
(3) 刀具的環狀切削與切削深度為運動解耦(Kinematic decoupled),可大幅降低機器人控制難度,且臨床操作上較為方便;
(4) 機構在需求運動範圍內不存在奇異位置(Singularity-position)。
本文首先回顧與顱骨手術相關之三種顱骨手術機器人,包含顱骨鑽孔、顱骨切削與開顱手術機器人,並綜整比較其機構特性。然後,針對開顱動作深入分析,據此提出一種專用於開顱手術之機器人機構。接著,進行該新型機構的位移分析、速度分析、奇異構形解析與運動性能分析,並以最佳化靈敏性(Dexterity)為目標,進行機構尺寸設計。最後,製作此機構之機電整合系統,測試其運動效果。本研究所提之開顱手術專用機構平台為全球首例,研究成果期可有助於具體實現機器人於開顱手術之應用。


Surgical robotics is a rapidly developing technology in the field of surgery and robotics. Although there have been many surgical robots developed for different kinds of surgeries, robotic applications in craniotomy is still rarely discussed. Furthermore, as far as we are aware, there is no any robotic manipulator that is specifically designed for craniotomy for meeting its special surgical motion requirements. This thesis is therefore devoted to the kinematic design of a new robotic manipulator towards the application for craniotomy. The proposed robotic structure has the following features:
(1)In comparison to the existing serial-type general-purpose industrial robots for craniotomy, the proposed manipulator has a
better robustness in nature, which provides a firm basement for executing drilling and cutting forces during surgery.
(2)Subject to the mechanical constraints of the robot manipulator, the surgical tool, which is held by the end-effector, always
has its tool axis normal to the skull surface. This provides a best working posture for the tool when drilling and cutting the
skull.
(3)The cutting and drilling DOF (degrees of freedom) of the surgical tool are fully decoupled. It helps reducing the control
complexity of the robot and provides intuitive operation for the surgeon in operating theatre.
(4)The mechanism is singularity-free within the practically-required workspace.
In this thesis, we firstly complete a detailed review among the available robotic systems for skull surgery, i.e., the skull drilling, skull milling, and craniotomy robots. Then, based on the motion requirements of craniotomy procedure, we propose a novel robotic manipulator for craniotomy use. We further complete the position analysis, velocity analysis, kinematic performance analysis, and optimization design for the proposed manipulator. Last, we build up a mechatronic prototype of the robot, verifying the effectiveness and kinematic performance of the manipulator. In conclusion, it is anticipated that the outcome of this research is helpful for the validation of robotically-assisted craniotomy surgery.

目錄 摘要I Abstract III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號表 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 5 1.2.1 顱骨手術機器人 5 1.2.2 遠端運動中心機構 9 1.3 研究目的 13 1.4 論文架構 14 第二章 顱骨手術機器人簡介 16 2.1 顱骨鑽孔手術機器人 16 2.2 顱骨銑削手術機器人 20 2.3 開顱手術機器人 24 2.4 機構比較 27 2.5 小結 29 第三章 開顱手術機器人之創新機構設計 30 3.1 開顱手術流程 30 3.2 機器人運動設計要求 32 3.3 開顱機構之創新設計 33 3.3.1 RCM開顱機構 33 3.3.2 偏移RCM開顱機構 36 3.4 小結 38 第四章 位置分析 40 4.1 開顱刀具之偏擺-俯仰-翻滾角(Pan-tilt-roll angle) 40 4.2 順向運動學 41 4.2.1 驅動源與偏擺-俯仰角(Pan-tilt anlge)之關係 44 4.2.2 偏擺-俯仰角與末端效應器方位之關係 50 4.2.3 偏擺-俯仰角、刀具進給量與末端效應器位置之關係 51 4.3 逆向運動學 53 4.3.1 末端效應器方位與偏擺-俯仰角之關係 54 4.3.2 偏擺-俯仰角與驅動源之關係 55 4.4 數值範例與繪圖驗證 58 4.4.1 順向運動學解 58 4.4.2 逆向運動學解 61 4.5 小結 63 第五章 速度分析 65 5.1 Jacobian矩陣 65 5.1.1 末端效應器偏擺角與俯仰角之角速度 66 5.1.2 末端效應器之線速度與角速度 69 5.2 垂直面RCM機構之奇異構形 72 5.2.1 線速度Jacobian退化之奇異構形 73 5.2.2 角速度Jacobian退化之奇異構形 74 5.3 水平面RCM機構之奇異構形 75 5.4 驅動源與奇異構形之關係 80 5.5 小結 81 第六章 運動性能分析 83 6.1 操控性分析(Manipulability Analysis) 83 6.1.1 垂直面RCM機構操控性 85 6.1.2 水平面RCM機構操控性 88 6.2 靈敏性分析(Condition Number Analysis) 91 6.2.1 垂直面RCM機構靈敏性 93 6.2.2 水平面RCM機構靈敏性 94 6.3 小結 95 第七章 最佳化設計 97 7-1 目標函數 97 7-2 設計變數 98 7-3 限制條件 99 7-4 最佳化結果 102 7-5 小結 106 第八章 原型機製作 107 8-1 CAD模型 107 8-2 原型機實作 108 第九章 結論與未來展望 110 9.1 結論 110 9.2 未來展望 112 參考文獻 114

[1] Kuo, C.-H., Dai, J.-S., Dasgupta, P., 2012, “Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview,” International Journal of Medical Robotics and Computer Assisted Surgery, 8(2), pp. 127-145.
[2] 郭進星、蕭銘暉、李高逵、賴紹榕、蘇俊瑋,2012,手術機器人之發展現況,機器人產業情報報告,第63期,第6-20頁。
[3] Burghart, C., Raczkowsky, J., Rembold, U., Worn, H., 1998, “Robot Cell for Craniofacial Surgery,” Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany, 31 August-4 September, pp. 2506-2511.
[4] 袁嘉駿,2009,機械手臂輔助開顱手術之研究,碩士論文,工程技術研究所,龍華科技大學,桃園,臺灣。
[5] Eggers, G., Wirtz, C., Korb, W., Engel, D., Schorr, O., Kotrikova, B., Raczkowsky, J., Worn, H., Muhling, J., Hassfeld, S., Marmulla, R., 2005, “Robot-Assisted Craniotomy,” Minimally Invasive Neurosurgery, 48(3), pp. 154-158.
[6] Engel, D., Raczkowsky, J., Worn, H., 2001, “A Safe Robot System for Craniofacial Surgery,” Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, 21-26 May, pp. 2020-2024.
[7] Korb, W., Engel, D., Boesecke, R., Eggers, G., Marmulla, R., O'Sullivan, N., Raczkowsky, J., Hassfeld, S., 2003, “Risk Analysis for a Reliable and Safe Surgical Robot System,” Computer Assisted Radiology and Surgery: Proceedings of the 17th International Congress and Exhibition, London, UK, 25 - 28 June, pp. 766-770.
[8] Monnich, H., Stein, D., Raczkowsky, J., Worn, H., 2009, “System for Laser Osteotomy in Surgery with the Kuka Lightweight Robot - First Experimental Results,” World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7-12 September, pp. 179-182.
[9] DiMeco, F., Li, K. W., Mendola, C., Cantu, G., Solero, C. L., 2004, “Craniotomies without Burr Holes Using an Oscillating Saw,” Acta Neurochirurgica, 146(9), pp. 995-1001.
[10] Bast, P., Popovic, A., Wu, T., Heger, S., Engelhardt, M., Lauer, W., Radermacher, K., Schmieder, K., 2006, “Robot- and Computer-Assisted Craniotomy: Resection Planning, Implant Modelling and Robot Safety,” The International Journal of Medical Robotics and Computer Assisted Surgery, 2(2), pp. 168-178.
[11] Federspil, P. A., Geisthoff, U. W., Henrich, D., Plinkert, P. K., 2003, “Development of the First Force-Controlled Robot for Otoneurosurgery,” Laryngoscope, 113(3), pp. 465-471.
[12] Kobler, J. P., Kotlarski, J., Oltjen, J., Baron, S., Ortmaier, T., 2012, “Design and Analysis of a Head-Mounted Parallel Kinematic Device for Skull Surgery,” International Journal of Computer Assisted Radiology Surgery, 7(1), pp. 137-149.
[13] Matinfar, M., Baird, C., Batouli, A., Clatterbuck, R., Kazanzides, P., 2007, “Robot-Assisted Skull Base Surgery,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October-2 November, pp. 865-870.
[14] Sim, C., Ng, W. S., Teo, M. Y., Loh, Y. C., Yeo, T. T., 2001, “Image-Guided Manipulator Compliant Surgical Planning Methodology for Robotic Skull-Base Surgery,” International Workshop on Medical Imaging and Augmented Reality, Hong Kong, China, 10-12 June, pp. 26-29.
[15] Tsai, T. C., Hsu, Y. L., 2007, “Development of a Parallel Surgical Robot with Automatic Bone Drilling Carriage for Stereotactic Neurosurgery,” Biomedical Engineering: Applications, Basis and Communications, 19(4), pp. 269-277.
[16] Shen, w., Gu, J., Shen, Y., 2006, “Using Tele-Robotic Skull Drill for Neurosurgical Applications,” Proceeding of the IEEE International Conference on Mechatronics and Automation, Luoyang, China, 25-28 June, pp. 334-338.
[17] Xia, T., Baird, C., Jallo, G., Hayes, K., Nakajima, N., Hata, N., Kazanzides, P., 2008, “An Integrated System for Planning, Navigation and Robotic Assistance for Skull Base Surgery,” The international Journal of Medical Robotics and Computer Assisted Surgery, 4(4), pp. 321-330.
[18] Korb, W., Engel, D., Boesecke, R., Eggers, G., Kotrikova, B., Marmulla, R., Raczkowsky, J., Worn, H., Muhling, J., Hassfeld, S., 2003, “Development and First Patient Trial of a Surgical Robot for Complex Trajectory Milling,” Computer Aided Surgery, 8(5), pp. 247-256.
[19] Taylor, R. H., Stoianovici, D., 2003, “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on Robotics and Automation, 19(5), pp. 765-781.
[20] Guthart, G. S., Salisbury, J. K., Jr 2000, “The Intuitive™ Telesurgery System: Overview and Application,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, California, USA, 24-28 April, pp. 618-621.
[21] Baumann, R., Maeder, W., Glauser, D., Clavel, R., 1997, “Pantoscope: A Spherical Remote-Center-of-Motion Parallel Manipulator for Force Reflection,” Proceedings of the IEEE International Conference on Robotics and Automation Albuquerque, New Mexico, USA, 20-25 April, pp. 718-723.
[22] Vischer, P., Clavel, R., 2000, “Argos: A Novel 3-Dof Parallel Wrist Mechanism,” International Journal of Robotics Research, 19(1), pp. 5-11.
[23] Hadavand, M., Mirbagheri, A., Behzadipour, S., Farahmand, F., 2013, “A Novel Remote Center of Motion Mechanism for the Force-Reflective Master Robot of Haptic Tele-Surgery Systems,” International Journal of Medical Robotics and Computer Assisted Surgery, In press.
[24] Zong, G., Pei, X., Yu, J., Bi, S., 2008, “Classification and Type Synthesis of 1-Dof Remote Center of Motion Mechanisms,” Mechanism and Machine Theory, 43(12), pp. 1585-1595.
[25] Handini, D., Teo, M. Y., Lo, C. V. H., 2004, “System Integration of Neurobot: A Skull-Base Surgical Robotic System,” Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 1-3 December, pp. 43-48.
[26] Bai, S., Teo, M. Y., 2003, “Kinematic Calibration and Pose Measurement of a Medical Parallel Manipulator by Optical Position Sensors,” Journal of Robotic Systems, 20(4), pp. 201-209.
[27] Bozovic, V., 2008, Medical Robotics, I-Tech Education and Publishing, Vienna, Austria.
[28] Renishaw Plc, Neuromate; Available from: http://www.renishaw.com/.
[29] Engel, D., Raczkowsky, J., Worn, H., 2002, “Sensor-Based Milling in Surgical Robotics,” Computer-Assisted Radiology and Surgery: Proceedings of the 16th International Congress and Exhibition, Paris, France, 26-29 June, pp. 485-490.
[30] Worn, H., Aschke, M., Kahrs, L. A., 2005, “New Augmented Reality and Robotic Based Methods for Head-Surgery,” The International Journal of Medical Robotics and Computer Assisted Surgery, 1(3), pp. 49-56.
[31] 蕭銘暉,2013,開顱手術鑽孔切削兩用整合刀具之構想設計,碩士論文,機械工程系,國立臺灣科技大學,台北,台灣。
[32] Hamlin, G. J., Sanderson, A. C., 1998, Tetrobot: A Modular Approach to Reconfigurable Parallel Robotics, Kluwer Academic Publishers, Boston.
[33] Tsai, L.-W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, New York.
[34] Yoshikawa, T., 1985, “Manipulability of Robotic Mehcanisms,” The International Journal of Robotics Research, 4(2), pp. 3-9.
[35] Salisbury, J. K., Craig, J. J., 1982, “Articulated Hand: Force Control and Kinematic Issues,” International Journal of Robotics Research, 1(1), pp. 4-17.
[36] Klein, C. A., Blaho, B. E., 1987, “Dexterity Measures for the Design and Control of Kinematically Redundant Manipulatiors,” International Journal of Robotics Research, 6(2), pp. 72-83.
[37] Merlet, J. P., 2007, “Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots,” ASME Journal of Mechanical Design, 28(1), pp. 199-206.
[38] Alici, G., Shirinzadeh, B., 2004, “Optimum Synthesis of Planar Parallel Manipulators Based on Kinematic Isotropy and Force Balancing,” Robotica, 22(1), pp. 97-108.

無法下載圖示 全文公開日期 2018/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE