簡易檢索 / 詳目顯示

研究生: 黃瑋迪
Wei-di Huang
論文名稱: 濺鍍法製備硒化銅錫薄膜與其特性分析
Preparation and characterization of sputtered Cu2SnSe3 thin films
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 黃鶯聲
Ying-sheng Huang
薛人愷
Ren-kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 120
中文關鍵詞: 濺鍍法硒化銅錫薄膜
外文關鍵詞: Sputter, Cu2SnSe3, Thin film
相關次數: 點閱:275下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,有越來越多人開始投入太陽能電池的研究,因此技術進步的很快,目前研究雖然都有不錯的轉換效率,但由於成本高昂,故一直無法普及,因此找尋新的材料來壓低太陽能電池成本是必需的,然而在各種新材料被研究與開發的情況下,硒化銅錫(Cu2SnSe3)薄膜其具有低成本、材料來源充足且能隙為0.7~0.9 eV等特性,但卻很少研究探討將其應用於薄膜太陽能電池之吸收層上。
本研究以濺鍍法製備Cu2SnSe3薄膜,並探討不同靶材、基板溫度、退火溫度和補償碇等不同變數對Cu2SnSe3薄膜特性之影響,並且透過X-ray繞射分析儀(XRD)、場發射電子掃描式顯微鏡(FE-SEM)和能譜儀(EDS)分析Cu2SnSe3薄膜之物理特性,透過霍爾量測(Hall measurement)與吸收光譜(Absorption spectroscopy)分析薄膜電學及光學特性。
經由實驗結果得知在基板溫度為400℃下濺鍍沉積,接著在500℃下退火熱處理後的Cu2SnSe3薄膜有較佳的結晶特性,其薄膜為多晶結構,晶粒大小約1~3 μm,薄膜為P型半導體,能隙為直接能隙,能隙寬度為0.7~0.8 eV,吸收係數在退火前後均維持在104 cm−1、載子濃度為5×1019 cm-3及載子遷移率為8~10 cm2V-1s-1。


Recently, the research of solar cells is much more attractive and its technological progress is very fast. Although solar cells have reached a good conversion efficiency, high cost has limited their further applications. Lowering the cost with the finding of new materials is necessary. Although there are many CuInSe2 replacements, low-cost Cu2SnSe3 thin films with an energy band gap of 0.7-0.9 eV have not been seriously investigated for the absorption layer of the solar cells.
In this study, the effects of the target composition, substrate temperature, annealing temperature, and the Se compensating discs on the sputtered Cu2SnSe3 thin films are discussed. The physical characteristics of the Cu2SnSe3 thin films were invstigated by XRD, FE-SEM, and EDS XRD. Hall measurement and Absorption spectroscopy were used for the electrical and optical properties, respectively.
The experimental results shows that the sputtered Cu2SnSe3 thin films deposited at 400oC followed by annealing at 500oC have a better performance. At this condition, the films are p-type and have well crystallized with a large grain size of 1-3 m, a direct energy gap of 0.7-0.8 eV, an absorption coefficient of 104 cm-1 before and after annealing, a carrier concentration of 5×1019 cm-3, and the highest carrier mobility of 8~10 cm2V-1s-1.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 序論 1 1-1 前言 1 1-2 太陽能電池工作原理 1 1-3 太陽能電池基本構造與發展 3 1-3-1 基本構造 3 1-3-2 發展 3 1-4薄膜太陽能電池的種類 4 1-4-1 矽薄膜太陽能電池(Thin Film Silicon Solar Cells) 4 1-4-2 非晶系矽太陽能電池(Amorphous silicon solar cell) 5 1-4-3 碲化鎘薄膜太陽能電池(Cadmium Telluride Thin Film Photovoltaics,CdTe) 5 1-4-4 氮化銦薄膜太陽能電池(Indium Nitride Thin Film Photovoltaics,InN) 6 1-4-5 硒化銅銦鎵太陽能電池(Copper Indium Gallium Diselenide Solar Cells) 7 1-5 薄膜太陽能電池吸收層材料選擇 8 1-5-1 能隙 8 1-5-2 載子型態 8 1-5-3 吸收係數(α) 8 1-5-4 晶粒大小 9 1-6 研究動機與目的 9 第二章 理論基礎與文獻回顧 12 2-1 硒化銅銦鎵材料結構與特性 12 2-2 硒化銅錫材料結構與特性 12 2-3 基板選擇 13 2-4 文獻回顧 14 2-4-1 硒化銅銦鎵(Cu(In,Ga)Se2,CIGS) 14 2-4-2 硒化銅鋅錫(Cu2ZnSnSe4,CZTSe) 17 2-4-3 硫化銅鋅錫(Cu2ZnSnS4,CZTS) 19 2-4-4 硒化銅錫(Cu2SnSe3,CTSe) 19 2-4-5 硫化銅錫(Cu2SnS3) 20 2-5兩階段薄膜製程技術 21 2-6薄膜沉積理論基礎 22 2-6-1 電漿理論[] 22 2-6-2 濺鍍系統 24 2-6-3 薄膜沉積機制[] 25 2-6-4 濺鍍率(Sputtering yield) 29 2-6-5 薄膜成長速率 30 2-6-6 基板溫度 30 第三章 實驗步驟 34 3-1實驗設備說明 34 3-1-1 DC直流濺鍍系統 34 3-1-2 高溫管型爐 35 3-2 實驗藥品和氣體選擇 35 3-2-1 藥品 35 3-2-3 氣體 36 3-3 實驗流程 36 3-3-1基板清洗 36 3-3-2藥品製備 36 3-3-3靶材製備 38 3-3-4薄膜濺鍍 38 3-4退火熱處理 38 3-5 分析儀器 39 3-5-1 X光繞射分析儀(X-ray Diffractometer,XRD) 39 3-5-2 場發射掃描式電子顯微鏡(Field Emission of Scanning Electron Microscope,FE-SEM) 39 3-5-3 霍爾量測(Hall Effect Measurement System) 40 3-5-4 吸收光譜 (Absorption spectroscopy) 40 第四章結果與討論 47 4-1 Cu2SnSe3薄膜物理性質分析 47 4-1-1 FE-SEM表面形貌觀察 47 4-1-2 EDS成分分析 48 4-1-3 XRD結構性質分析 51 4-2 未退火前薄膜分析結果討論 56 4-3 退火熱處理 57 4-3-1在硒化錫(SnSe2)補償碇下退火 57 4-3-2在硒(Se)補償碇下退火 61 4-3-3不同補償碇的比較 63 4-4 電性量測(Hall measurements ) 63 4-4-1未退火前 64 4-4-2退火後 69 4-5吸收光譜 69 第五章 結論 100 第六章 參考文獻 103

[1]經濟部能源委員會, “能源政策白皮書”, (1998)
[2]“International Energy Outlook 1997”, International Energy Agent, (1997)
[3]蔡進 譯 ”超高效率太陽電池-從愛因斯坦的光電效應談起”,物理雙月刊27, 701 (2005)
[4]Adams, W. G., Day, R. E., Soc, Proc. R., A25, pp.113 (1877)
[5]Yang, J., Banerjee, A., Guha, S., “Triple-junction amorphous silicon alloy solar cell with 14.6 % initial and 13.0 % stable conversion efficiencies,” Applied Physics Letters , Vol. 70, pp. 2975-2977 (1997)
[6]Banerjee, A., Yang, J., Glatfelter, T., Hoffman, K., Guha, S., “Experimental study of p layers in "tunnel" junctions for high efficiency amorphous silicon alloy multijunction solar cells and modules,” Applied Physics Letters , Vol. 64, pp. 1517-1519 (1994)
[7]Wu, J., Walukiewicz, W., Yu, K. M., Shan, W., Ager III, J. W., Haller, E. E., Lu, H., Kurtz, S., “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” Journal of Applied Physics, Vo. 94, pp. 6477-6482 (2003)
[8]陳志泰 ”使用三氮化氫成長磊晶氮化銦薄膜:成長機制之即時研究與光學特性分析”, 大同大學光電所,碩士論文。
[9]Jasinski, J., Yu, K. M., Walukiewicz, W., Liliental-Weber, Z., Washburn, J., “Effects of structural defects on the activation of sulfur donors in GaNxAs1-x formed by N implantation,” Physica B: Condensed Matter, Vol. 308, pp. 874-876 (2001)
[10]Ishizuka, S., Yamada, A., Matsubara, K., “Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material,” Journal of Renewable and Sustainable Energy, Vol. 1, 013102 (2009)
[11]Bhattacharya, R. N., Contreras, M. A., Egaas, B., Noufi, R. N., Kanevce, A., Sites, J. R., “High efficiency thin-film CuIn1-xGaxSe2 photovoltaic cells using a Cd1-xZnxS buffer layer,” Applied Physics Letters, Vol. 89, 253503 (2006)
[12]Babu, G. S., Kumar, Y. B. K., Bhaskar, P. U., Raja, V. S., “Growth and characterization of co-evaporated Cu2ZnSnSe 4 thin films for photovoltaic applications,” Journal of Physics D: Applied Physics, Vol. 41, 205305 (2008)
[13]Katagiri, H., Jimbo, K., Yamada, S., “Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique,” Applied Physics Express, Vol. 1, 041201 (2008)
[14]Delgado, G. E., Mora, A. J; Marcano, G., “Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data,” Materials Research Bulletin , Vol. 38, 1949-1955 (2003)
[15]Yang, L. C., Chen, G. S., Rockett, A., “Surface polarities of sputtered epitaxial CuInSe2 and Cu1In3Se5 thin films grown on GaAs(001) substrates,” Applied Physics Letters, Vol. 86, 201907 (2005)
[16]Hall, A. J., Hebert, D., Lei, C., “Epitaxial growth of very large grain bicrystalline Cu(In,Ga)Se2 thin films by a hybrid sputtering method,” Journal of Applied Physics, Vol. 103, 083540 (2008)
[17]Eberhardt, J., Schulz, K., Metzner, H., “Epitaxial and polycrystalline CuInS2 thin films: A comparison of opto-electronic properties,” Thin Solid Films, Vol. 515, pp. 6147-6150 (2007)
[18]Hahn, T., Metzner, H., Reislohner, U., “ Morphology and structure of thin epitaxial Cu(In,Ga)S2 films on Si substrates, ” Thin Solid Films, Vol. 515, pp. 332-335 (2005)
[19]Sekiguchi, K., Tanaka, K., Moriya, K., “Epitaxial growth of Cu2ZnSnS4 thin films by pulsed laser deposition, ” Physica Status Solidi C, Vol. 3, No. 8, pp. 2618-2621 (2006)
[20]Yun, J. H., Kim, K. H., Kim, M. S., “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate,” Thin Solid Films, Vol. 515, pp. 5876-5879 (2007)
[21]Ishizuka, S., Yamada, A., Matsubara, K., “Alkali incorporation control in Cu(In, Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency,” Applied Physics Letters, Vol. 93, 124105 (2008)
[22]Ramanathan, K., Teeter, G., Keane, J. C., “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films, Vol. 480, pp. 499-502 (2005)
[23]Zhang, L., He, Q., Jiang, W.L., Liu,F. F., Li, C. J., Sun, Y., “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 114-118 (2009).
[24]Ishizuka, S., Shibata, H., Yamada, A., Fons, P., Sakurai, K., Matsubara, K., Niki, H., “Growth of polycrystalline Cu(In,Ga)Se2 thin films using a radio frequency-cracked Se-radical beam source and application for photovoltaic devices,” Applied Physics Letters, Vol. 91, 041902 (2007)
[25]Muller, J., Nowoczin, J., Schmitt, H., “Composition, structure and optical properties of sputtered thin films of CuInSe2,” Thin Solid Films, Vol. 496, pp. 364-370 (2006)
[26]Wellings, J. S., Samantilleke,A. P., Heavens, S. N., Warren, P., Dharmadasa, I. M., “Solar Energy Materials & Solar Cells,” Vol. 93, pp. 1518-1523 (2009)
[27]Babu, G. S., Kumar, Y. B. K., Haskar, P. U., Raja, V. S., “Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications,” Journal of Physics D-Applied Physics, Vol. 41, 205305 (2008)
[28]Wibowo, R. A., Kim, W. S., Lee, E. S., Munir, B., Kim, K. H., “Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets,” Journal of m Physics and Chemistry of Solids, Vol. 68, pp. 1908-1913 (2007)
[29]Jimbo, K., Kimura, R., Kamimura, T., Yamada, S., Maw, W. S., Araki, H., Oishi, K., Katagiri, H., “Cu2ZnSnS4-type thin film solar cells using abundant materials,” Thin Solid Films, Vol. 515, pp. 5997-5999 (2007)
[30]Ennaoui, A., Lux-Steiner, M., Weber, A., Abou-Ras, D., Kötschau, I., Schock, W., Schurr, W., Hölzing, A., Jost, S., Hock, R., Schulze, J., Kirbs, A., “Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective,” Thin Solid Films, Vol. 517, pp. 2511-2514 (2009)
[31]Babu, G. S., Kumar, Y. B. K., Reddy, Y. B. K., Sundara Raja, V., “Growth and characterization of Cu2SnSe3 thin films,” Materials Chemistry and Physics, Vol. 96, pp. 442-446 (2006)
[32]Bouaziz, M., Amlouk, M., Belgacem, S., “Structural and optical properties of Cu2SnS3 sprayed thin films,” Thin Solid Films, Vol. 517, pp. 2527-2530 (2009)
[33]Volobujeva, O., Altosaara, M., Raudoja, J., Mellikov, E., Grossberg, M., Kaupmees, L., Barvinschi, P., “SEM analysis and selenization of Cu-In alloy films produced by co-sputtering of metals,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 11-14 (2009)
[34]Chen, G. S., Yang, J. C., Chan, Y. C., Yang, L. C., Huang, W., “Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 1351-1355 (2009)
[35]Ganchev, M., Kois, J., Kaelin, M., Bereznev, S., Tzvetkova, E., Volobujeva, O., Stratieva, N., Tiwari, A., “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu-In-Ga precursors,” Thin Solid Films, Vol. 51, pp. 325-327 (2006)
[36]Schurr, R., Holzing, A., Jost, S., Hock, R., Voβ, T., Schulze, J., Kirbs, A., Ennaoui, A., Lux-Steiner, M., Weber, A., Kotschau, I., Schock, H. W., “The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors,” Thin Solid Films, Vol. 517, pp. 2465-2468 (2009)
[37]Araki, H., Kubo, Y., Mikaduki, A., Jimbo, K., Maw, W. S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., “Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 996-999 (2009)
[38]Luo, P., Zhu, C., Jiang, G., Solid State Communications, Vol. 146, pp. 57-60 (2001)
[39]Lee, S. Y., Park, B. O., “CuInS2 thin films deposited by sol-gel spin-coating method,” Thin Solid Films, Vol. 516, pp. 3862-3864 (2008)
[40]莊達人, “VLSI 製造技術” ,高立圖書有限公司(2000)
[41]Jianbo, C., Wenbin, C., Kaiyu, Y., “High luminance YAG single crystal phosphor screen,” Display, Vol. 21, pp. 195-198 (2000)
[42]Marcano, G., de Chalbaud, L. M., Rincon, C., Sanchez Perez, G., “Crystal growth and structure of the semiconductor Cu2SnSe3,” Materials Letters, Vol. 53, pp. 151–154 (2002)
[43]Delgado, G. E., Mora, A., Marcano, G. Rincon, C., “Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data,” Materials Research Bulletin, Vol. 38, pp. 1949-1955 (2003)
[44]Schmid, D., Ruckh, M., Grunwald , F., Schock, H. W., “Chalcopyrite defect chalcopyrite heterojunctions on the basic of CuInSe2,” Journal of Applied Physics, Vol. 73, pp. 2902-2909(1993)
[45]Kwon, S. H., Ahn, B. T., Kim, S. K., Yoon, K. H., Song, J., “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films, Vol. 323, pp. 265-269 (1998)
[46]Park, J. S., Dong, Z., Kim, S., Perepezko, J. H., “ CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” Journal of Applied Physics, Vol. 87, pp. 3683-3690(2000)

QR CODE