簡易檢索 / 詳目顯示

研究生: 康約翰
Johan Iskandar
論文名稱: 金屬鹵化物鈣鈦礦材料與開發高效率、超高亮度、以及具有穩定度鈣鈦礦發光二極體之研究
Investigation of the Metal Halide Perovskite Materials and Their Development for Efficient, Ultra-Bright, and Stable Perovskite Light-Emitting Diodes
指導教授: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
口試委員: 劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
黃炳綜
Ping-Tsung Huang
黃柏仁
Bohr-Ran Huang
范慶麟
Ching-Lin Fan
徐世祥
Shih-Hsiang Hsu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 149
中文關鍵詞: 有機-無機鹵化物鈣鈦礦無抗溶劑鈣鈦礦LED穩定外量子效率
外文關鍵詞: organic-inorganic halide perovskite, antisolvent-free, PeLED, stability, EQE
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機鹵化物鈣鈦礦材料由於其優異的光學和電氣特性而引起了極大的興趣。 最近的報告強調了它們在太陽能電池設備中的應用,實現了超過 25% 的電力轉換效率。 除了卓越的太陽能電池性能外,鈣鈦礦材料還表現出強烈的光致發光(PL)特性。 透過改變前驅溶液成分可以輕鬆調整發射顏色,這使得它們對低成本發光二極體(LED)和雷射很有吸引力。 LED 以其能源效率而聞名,近年來取得了巨大的技術進步。 在不到十年的時間裡,鈣鈦礦材料在 LED (PeLED) 技術中的使用取得了顯著的進步,裝置效率從少於 1% 提高到超過 20%。
    在 PeLED 中,發射材料遵循 ABX3 化學計量和鈣鈦礦結構,其中 A 和 B 是陽離子,X 是陰離子。 本論文首先介紹了PeLED的發展歷程,並分析了影響外量子效率(EQE)的關鍵因素。 鈣鈦礦薄膜的表面形貌、覆蓋率和晶體尺寸被認為是決定 EQE 的關鍵參數。 為了進一步增強EQE,透過摻入長鏈配體(例如碘化芐銨(C7H10IN)和碘化苯乙基銨(C8H12IN))來探索鈣鈦礦的本體和表面缺陷鈍化。 我們證明,這種方法可將 PeLED 效率提高高達 18.74%。
    通常,在裝置生產過程中,總是使用反溶劑方法來生產均勻、無針孔的鈣鈦礦薄膜,從而提高 PeLED 的效率。 然而,高效PeLED中使用的反溶劑大多具有劇毒、危險和揮發性,均構成嚴重的環境污染風險。 為此,我們透過消除反溶劑(無反溶劑)的使用來縮短製造程序,使 PeLED 技術更接近實際應用。 在本論文中,我們提出了一種技術,透過預熱基板並使用N,N-二甲基乙醯胺(C4H9NO)作為鈣鈦礦前驅體溶液中的唯一溶劑來簡單地取代通常的反溶劑程序,以生產無反溶劑的鈣鈦礦薄膜。 因此,獲得了 EQE 為 13.96% 的高效無抗溶劑 PeLED。
    此外,我們使用 n-i-p PeLED 來提高裝置穩定性。 透過將 A 位陽離子從基於 MA 的鈣鈦礦切換為基於 FA 的鈣鈦礦,並採用摻鋁 ZnO 作為 ETL,裝置穩定性提高約 14 倍,輻射亮度高達 2638.5 W sr-1 m-2。


    Organic-inorganic halide perovskite materials have gained significant interest due to their exceptional optical and electrical characteristics. Recent reports highlight their application in solar cell devices, achieving power conversion efficiencies exceeding 25%. Alongside their remarkable solar cell performance, perovskite materials exhibit strong photoluminescence (PL) properties. The emission color can be easily adjusted by altering precursor solution composition, making them appealing for low-cost light-emitting diodes (LEDs) and lasers. LEDs, known for their energy efficiency, have seen substantial technological advancements in recent years. In less than a decade, the use of perovskite materials in LED (PeLED) technology has seen significant improvements, with device efficiency rising from less than 1% to more than 20%.
    In PeLEDs, the emission material follows ABX3 stoichiometry and perovskite structure in which A and B are cations and X are anions. This dissertation begins by introducing the development of PeLEDs and analyzing key factors affecting external quantum efficiency (EQE). Surface morphology, coverage rate, and crystal size of perovskite films are identified as critical parameters determining EQE. To further enhance EQEs, bulk and surface defect passivation of perovskite are explored by incorporating long-chain ligands such as benzylammonium iodide (C7H10IN) and phenethylammonium iodide (C8H12IN) . We demonstrate that this method improves PeLED efficiency by up to 18.74%.
    Commonly, during device production, antisolvent methods are always used to produce homogeneous, pinhole-free perovskite film which enables enhanced PeLEDs efficiency. However, mostly all the anti-solvents utilized in highly efficient PeLEDs are extremely toxic, dangerous, and volatile, and they all pose a severe environmental pollution risk. For this reason, we shortened the fabrication procedures by eliminating the use of antisolvents (antisolvent-free) to bring PeLEDs technology closer to practical application. In this thesis, we suggest a technique that simply replaces the usual antisolvent procedure by preheating the substrate and using N,N-dimethylacetamide (C4H9NO) as the sole solvent in the perovskite precursor solution to produce an antisolvent-free perovskite film. Consequently, an efficient antisolvent-free PeLED with an EQE of 13.96% is obtained.
    Furthermore, we used n-i-p PeLEDs to increase device stability. By switching the A-site cation from MA- to FA-based perovskite and incorporating Al-doped ZnO as the ETL, the device stability increased up to ~14-fold with a high radiance of 2638.5 W sr-1 m-2.

    TABLE OF CONTENTS ABSTRACT iv ACKNOWLEDGMENTS vi TABLE OF CONTENTS viii LIST OF FIGURES x LIST OF TABLES xiii LIST OF EQUATIONS xiv LIST OF ABBREVIATIONS xv CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Thesis Aims 5 CHAPTER 2 LIGHT-EMITTING DIODES 6 2.1 History of Light-emitting diodes 6 2.2 The Operation of a Light-Emitting Diode 7 2.3 Parameters of Light-emitting diodes 9 2.3.1 Radiance 9 2.3.2 Luminance 10 2.3.3 Internal quantum efficiency 11 2.3.4 External quantum efficiency 12 2.4 Generation and Recombination in Semiconductors 13 CHAPTER 3 PEROVSKITE-LIGHT EMITTING DIODES 17 3.1 Perovskite Materials 17 3.1.1 Crystal structure of perovskite 17 3.1.2 Various type of perovskite emissive layers 20 3.1.3 The adjustment of perovskite bandgap 22 3.2 Typical Configurations of Perovskite LEDs 24 3.3 Typical Materials for Perovskite LEDs 26 CHAPTER 4 MATERIALS AND CHARACTERIZATION TECHNIQUES 30 4.1 Materials 30 4.2 Transparent Conductive Substrates Preparation 31 4.3 Characterization of Perovskite Emissive Layer 33 4.3.1 Scanning electron microscope 34 4.3.2 Atomic force microscope 35 4.3.3 X-ray diffraction 36 4.3.4 Ultraviolet-visible spectroscopy 38 4.3.5 Steady-state photoluminescence spectroscopy 40 4.3.6 Time-resolve photoluminescence spectroscopy 42 4.3.7 Temperature-dependent photoluminescence spectroscopy 45 4.4 Characterization of Perovskite Light-Emitting Diodes 46 4.4.1 Current density-voltage and radiance-voltage characteristics 46 4.4.2 Device Efficiency 49 CHAPTER 5 PEROVSKITE LED PERFORMANCE WITH VARIOUS PHENYLALKYLAMMONIUM ADDITIVE CONCENTRATIONS 51 5.1 Experimental Methods 51 5.2 Results and Discussion 52 CHAPTER 6 STRATEGIES FOR ENHANCHING EFFICIENCY, STABILITY, AND BRIGHNESS OF PEROVSKITE LIGHT-EMITTING DIODES 66 6.1 Surface Engineering 66 6.1.1 Experimental methods 67 6.1.2 Results and discussion 68 6.2 Preheating Technique 84 6.2.1 Experimental methods 85 6.2.2 Results and discussion 85 6.3 The N-I-P Architecture for Enhancing PeLED Operating Stability 88 CHAPTER 7 CONCLUSIONS AND FUTURE WORK OUTLOOK 94 7.1 Conclusions 94 7.2 Future Work Outlook 96 REFERENCES 97 APPENDIX LIST OF PUBLICATIONS

    [1] F. Wang, X. Zou, M. Xu, H. Wang, H. Wang, H. Guo, J. Guo, P. Wang, M. Peng, Z. Wang, Y. Wang, J. Miao, F. Chen, J. Wang, X. Chen, A. Pan, C. Shan, L. Liao, W. Hu, Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors, Adv. Sci. 8 (2021) 1–15. https://doi.org/10.1002/advs.202100569.
    [2] R. Li, S. Chen, X. Li, G. Yin, Y. Gong, J. Yu, G. Pang, J. Liu, Y. Liu, Z. Ni, L. Zhang, R. Chen, H.L. Wang, Zn doped MAPbBr3 single crystal with advanced structural and optical stability achieved by strain compensation, Nanoscale. 12 (2020) 3692–3700. https://doi.org/10.1039/c9nr09657d.
    [3] K. Sultan, M. Ikram, K. Asokan, Structural, optical and dielectric study of Mn doped PrFeO3 ceramics, Vacuum. 99 (2014) 251–258. https://doi.org/10.1016/j.vacuum.2013.06.014.
    [4] H. Cho, Y. Yun, W.C. Choi, I.S. Cho, S. Lee, Structural, optical, and electrical properties of tin iodide-based vacancy-ordered-double perovskites synthesized via mechanochemical reaction, Ceram. Int. 48 (2022) 3368–3373. https://doi.org/10.1016/j.ceramint.2021.10.112.
    [5] Y. Liu, Z. Yang, S.F. Liu, Recent Progress in Single-Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications, Adv. Sci. 5 (2018). https://doi.org/10.1002/advs.201700471.
    [6] Y. Zhou, J. Chen, O.M. Bakr, H.T. Sun, Metal-Doped Lead Halide Perovskites: Synthesis, Properties, and Optoelectronic Applications, Chem. Mater. 30 (2018) 6589–6613. https://doi.org/10.1021/acs.chemmater.8b02989.
    [7] A. Swarnkar, W.J. Mir, A. Nag, Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites?, ACS Energy Lett. 3 (2018) 286–289. https://doi.org/10.1021/acsenergylett.7b01197.
    [8] S. Luo, W.A. Daoud, Recent progress in organic-inorganic halide perovskite solar cells: Mechanisms and material design, J. Mater. Chem. A. 3 (2015) 8992–9010. https://doi.org/10.1039/c4ta04953e.
    [9] S. Brittman, G.W.P. Adhyaksa, E.C. Garnett, The expanding world of hybrid perovskites: Materials properties and emerging applications, MRS Commun. 5 (2015) 7–26. https://doi.org/10.1557/mrc.2015.6.
    [10] M. Anaya, G. Lozano, M.E. Calvo, H. Míguez, ABX3 Perovskites for Tandem Solar Cells, Joule. 1 (2017) 769–793. https://doi.org/10.1016/j.joule.2017.09.017.
    [11] Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chem. Mater. 28 (2016) 284–292. https://doi.org/10.1021/acs.chemmater.5b04107.
    [12] C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Sci. Adv. 5 (2019) 1–10. https://doi.org/10.1126/sciadv.aav0693.
    [13] S. Burger, M.G. Ehrenreich, G. Kieslich, Tolerance factors of hybrid organic-inorganic perovskites: recent improvements and current state of research, J. Mater. Chem. A. 6 (2018) 21785–21793. https://doi.org/10.1039/C8TA05794J.
    [14] Q. Sun, W.J. Yin, Thermodynamic Stability Trend of Cubic Perovskites, J. Am. Chem. Soc. 139 (2017) 14905–14908. https://doi.org/10.1021/jacs.7b09379.
    [15] A.E. Fedorovskiy, N.A. Drigo, M.K. Nazeeruddin, The Role of Goldschmidt’s Tolerance Factor in the Formation of A2BX6 Double Halide Perovskites and its Optimal Range, Small Methods. 4 (2020) 1–6. https://doi.org/10.1002/smtd.201900426.
    [16] K.Y. Tsui, N. Onishi, R.F. Berger, Tolerance Factors Revisited: Geometrically Designing the Ideal Environment for Perovskite Dopants, J. Phys. Chem. C. 120 (2016) 23293–23298. https://doi.org/10.1021/acs.jpcc.6b09277.
    [17] E.B. Kim, M.S. Akhtar, H.S. Shin, S. Ameen, M.K. Nazeeruddin, A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances, J. Photochem. Photobiol. C Photochem. Rev. 48 (2021) 100405. https://doi.org/10.1016/j.jphotochemrev.2021.100405.
    [18] X. Chen, H. Zhou, H. Wang, 2D/3D Halide Perovskites for Optoelectronic Devices, Front. Chem. 9 (2021) 1–17. https://doi.org/10.3389/fchem.2021.715157.
    [19] Y. Gao, E. Shi, S. Deng, S.B. Shiring, J.M. Snaider, C. Liang, B. Yuan, R. Song, S.M. Janke, A. Liebman-Peláez, P. Yoo, M. Zeller, B.W. Boudouris, P. Liao, C. Zhu, V. Blum, Y. Yu, B.M. Savoie, L. Huang, L. Dou, Molecular engineering of organic–inorganic hybrid perovskites quantum wells, Nat. Chem. 11 (2019) 1151–1157. https://doi.org/10.1038/s41557-019-0354-2.
    [20] Z. Chen, C. Zhang, X.F. Jiang, M. Liu, R. Xia, T. Shi, D. Chen, Q. Xue, Y.J. Zhao, S. Su, H.L. Yip, Y. Cao, High-Performance Color-Tunable Perovskite Light Emitting Devices through Structural Modulation from Bulk to Layered Film, Adv. Mater. 29 (2017) 1–8. https://doi.org/10.1002/adma.201603157.
    [21] J.N. Yang, T. Chen, J. Ge, J.J. Wang, Y.C. Yin, Y.F. Lan, X.C. Ru, Z.Y. Ma, Q. Zhang, H. Bin Yao, High Color Purity and Efficient Green Light-Emitting Diode Using Perovskite Nanocrystals with the Size Overly Exceeding Bohr Exciton Diameter, J. Am. Chem. Soc. 143 (2021). https://doi.org/10.1021/jacs.1c09948.
    [22] J. Jiang, Z. Chu, Z. Yin, J. Li, Y. Yang, Red perovskite light-emitting diodes with eciency exceeding 25% realized by cospacer cations, (n.d.). https://doi.org/10.21203/rs.3.rs-1417650/v1.
    [23] J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho, H.J. Yun, D.H. Kim, J. Park, S.C. Lee, S.H. Park, E. Yoon, N.C. Greenham, T.W. Lee, Ultra-bright, efficient and stable perovskite light-emitting diodes, Nature. 611 (2022) 688–694. https://doi.org/10.1038/s41586-022-05304-w.
    [24] P. Teng, S. Reichert, W. Xu, S.C. Yang, F. Fu, Y. Zou, C. Yin, C. Bao, M. Karlsson, X. Liu, J. Qin, T. Yu, W. Tress, Y. Yang, B. Sun, C. Deibel, F. Gao, Degradation and self-repairing in perovskite light-emitting diodes, Matter. 4 (2021) 3710–3724. https://doi.org/10.1016/j.matt.2021.09.007.
    [25] W. Xiong, C. Zou, W. Tang, S. Xing, Z. Wang, B. Zhao, D. Di, Efficient and Bright Blue Perovskite LEDs Enabled by a Carbazole-Phosphonic Acid Interface, ACS Energy Lett. 8 (2023) 2897–2903. https://doi.org/10.1021/acsenergylett.3c00589.
    [26] Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou, L. Chu, S.J. Su, J. Peng, H.L. Yip, Y. Cao, Utilization of Trapped Optical Modes for White Perovskite Light-Emitting Diodes with Efficiency over 12%, Joule. 5 (2021) 456–466. https://doi.org/10.1016/j.joule.2020.12.008.
    [27] L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin, J. Wang, K. Wen, Z. Fu, T. Jiang, L. Xu, Y. Zhang, Y. Cao, C. Tu, J. Zhang, D. Liu, G. Zhang, D. Kong, N. Fan, G. Li, C. Yi, Q. Peng, J. Chang, X. Lu, N. Wang, W. Huang, J. Wang, Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes, Nat. Commun. 12 (2021) 8–15. https://doi.org/10.1038/s41467-021-25407-8.
    [28] S. Zhang, F. Yu, Q. Yuan, Y. Wang, S. Wei, T. Tesfamichael, B. Liang, H. Wang, UV-ozone induced surface passivation to enhance the performance of Cu2ZnSnS4 solar cells, Sol. Energy Mater. Sol. Cells. 200 (2019) 109892. https://doi.org/10.1016/j.solmat.2019.04.014.
    [29] H. Huang, M. Hao, Y. Song, S. Dang, X. Liu, Q. Dong, Dynamic Passivation in Perovskite Quantum Dots for Specific Ammonia Detection at Room Temperature, Small. 16 (2020) 1904462. https://doi.org/https://doi.org/10.1002/smll.201904462.
    [30] M. Que, B. Zhang, J. Chen, H. Yuan, Q. Wu, H. Wang, D. Gui, B. Li, Dual Ions Passivating FAPbBr3 Perovskite Quantum Dot Films via a Vacuum Drying Method for Stable and Efficient Solar Cells with an Ultrahigh Open-Circuit Voltage of over 1.67 V, ACS Appl. Energy Mater. 6 (2023) 3486–3494. https://doi.org/10.1021/acsaem.3c00009.
    [31] Q. Zhang, Q. Shang, R. Su, T.T.H. Do, Q. Xiong, Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold, Nano Lett. 21 (2021) 1903–1914. https://doi.org/10.1021/acs.nanolett.0c03593.
    [32] L. Lei, Q. Dong, K. Gundogdu, F. So, Metal Halide Perovskites for Laser Applications, Adv. Funct. Mater. 31 (2021) 1–73. https://doi.org/10.1002/adfm.202010144.
    [33] D. Wu, Y. Zhang, C. Liu, Z. Sun, Z. Wang, Z. Lin, M. Qiu, D. Fu, K. Wang, Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies, Adv. Devices Instrum. 4 (2023) 1–23. https://doi.org/10.34133/adi.0006.
    [34] Y. Deng, W. Tai, Q. Zhang, J. Tang, J. Li, K. Wang, H. Yu, High-performance flexible and self-powered perovskite photodetector enabled by interfacial strain engineering, J. Mater. Chem. C. 11 (2022) 600–608. https://doi.org/10.1039/d2tc03781e.
    [35] S. Hu, Z. Ren, A.B. Djurisic, A.L. Rogach, Metal Halide Perovskites as Emerging Thermoelectric Materials, ACS Energy Lett. 6 (2021) 3882–3905. https://doi.org/10.1021/acsenergylett.1c02015.
    [36] H. Xie, S. Hao, J. Bao, T.J. Slade, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation off-Centering Induces Ultralow Thermal Conductivity, J. Am. Chem. Soc. 142 (2020) 9553–9563. https://doi.org/10.1021/jacs.0c03427.
    [37] H. Tanaka, M. Misono, Advances in designing perovskite catalysts, Curr. Opin. Solid State Mater. Sci. 5 (2001) 381–387. https://doi.org/10.1016/S1359-0286(01)00035-3.
    [38] H. Arandiyan, P. Sudarsanam, S.K. Bhargava, A.F. Lee, K. Wilson, Perovskite Catalysts for Biomass Valorization, ACS Catal. 13 (2023) 7879–7916. https://doi.org/10.1021/acscatal.2c06147.
    [39] E. Rezaee, D. Kutsarov, B. Li, J. Bi, S.R.P. Silva, A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices, Sci. Rep. 12 (2022) 1–11. https://doi.org/10.1038/s41598-022-10790-z.
    [40] Y. Galagan, Perovskite Solar Cells: Toward Industrial-Scale Methods, J. Phys. Chem. Lett. 9 (2018) 4326–4335. https://doi.org/10.1021/acs.jpclett.8b01356.
    [41] X. Niu, N. Li, Q. Chen, H. Zhou, Insights into Large-Scale Fabrication Methods in Perovskite Photovoltaics, Adv. Energy Sustain. Res. 2 (2021). https://doi.org/10.1002/aesr.202000046.
    [42] T.Y. Yang, Y.Y. Kim, J. Seo, Roll-to-roll manufacturing toward lab-to-fab-translation of perovskite solar cells, APL Mater. 9 (2021). https://doi.org/10.1063/5.0064073.
    [43] C. Wu, K. Wang, J. Li, Z. Liang, J. Li, W. Li, L. Zhao, B. Chi, S. Wang, Volatile solution: the way toward scalable fabrication of perovskite solar cells?, Matter. 4 (2021) 775–793. https://doi.org/10.1016/j.matt.2020.12.025.
    [44] M.G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N.P. Padture, X.C. Zeng, Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics, Joule. 2 (2018) 1231–1241. https://doi.org/10.1016/j.joule.2018.04.026.
    [45] G.Y. Kim, K. Kim, H.J. Kim, H.S. Jung, I. Jeon, J.W. Lee, Sustainable and environmentally viable perovskite solar cells, EcoMat. 5 (2023) 1–25. https://doi.org/10.1002/eom2.12319.
    [46] S. Chu, W. Chen, Z. Fang, X. Xiao, Y. Liu, J. Chen, J. Huang, Z. Xiao, Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating, Nat. Commun. 12 (2021). https://doi.org/10.1038/s41467-020-20433-4.
    [47] L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki, S. Barlow, S.R. Marder, C. Gmachl, B.P. Rand, Thermal Management Enables Bright and Stable Perovskite Light-Emitting Diodes, Adv. Mater. 32 (2020) 1–7. https://doi.org/10.1002/adma.202000752.
    [48] Z. Wang, B. Huai, G. Yang, M. Wu, J. Yu, High performance perovskite light-emitting diodes realized by isopropyl alcohol as green anti-solvent, J. Lumin. 204 (2018) 110–115. https://doi.org/10.1016/j.jlumin.2018.07.049.
    [49] H. Yue, D. Song, S. Zhao, Z. Xu, B. Qiao, S. Wu, J. Meng, Highly bright perovskite light-emitting diodes based on quasi-2D perovskite film through synergetic solvent engineering, RSC Adv. 9 (2019) 8373–8378. https://doi.org/10.1039/c9ra00912d.
    [50] W. Xu, R. Ji, P. Liu, L. Cheng, L. Zhu, J. Zhang, H. Chen, Y. Tong, C. Zhang, Z. Kuang, H. Zhang, J. Lai, K. Wen, P. Yang, N. Wang, W. Huang, J. Wang, In Situ-Fabricated Perovskite Nanocrystals for Deep-Blue Light-Emitting Diodes, J. Phys. Chem. Lett. 11 (2020) 10348–10353. https://doi.org/10.1021/acs.jpclett.0c03120.
    [51] H. Zhang, Q. Niu, X. Tang, H. Wang, W. Huang, R. Xia, W. Zeng, J. Yao, B. Yan, Understanding the Effect of Delay Time of Solvent Washing on the Performances of Perovskite Solar Cells, ACS Omega. 2 (2017) 7666–7671. https://doi.org/10.1021/acsomega.7b01026.
    [52] K.M. Lee, C.J. Lin, B.Y. Liou, S.M. Yu, C.C. Hsu, V. Suryanarayanan, M.C. Wu, Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells, Sol. Energy Mater. Sol. Cells. 172 (2017) 368–375. https://doi.org/10.1016/j.solmat.2017.08.010.
    [53] M.D. Al-Amri, M.M. El-Gomati, M.S. Zubairy, Optics in our time, 2016. https://doi.org/10.1007/978-3-319-31903-2.
    [54] C.C. Sun, S.H. Ma, Q.K. Nguyen, Advanced led solid-state lighting optics, Crystals. 10 (2020) 1–3. https://doi.org/10.3390/cryst10090758.
    [55] B. Gayral, LEDs for lighting: Basic physics and prospects for energy savings, Comptes Rendus Phys. 18 (2017) 453–461. https://doi.org/10.1016/j.crhy.2017.09.001.
    [56] N. Zheludev, The life and times of the LED - A 100-year history, Nat. Photonics. 1 (2007) 189–192. https://doi.org/10.1038/nphoton.2007.34.
    [57] J. Thirumalai, Introductory Chapter: The Impression of Light-Emitting Diodes in Space-Age Advancements and Its Effect of Blue LED Irradiation, Light. Diode - An Outlook Empir. Featur. Its Recent Technol. Adv. 1 (2018) 1–14. https://doi.org/10.5772/intechopen.79375.
    [58] E.F. Schubert, History of light-emitting diodes 1.1, (1907) 1–10.
    [59] D. Feezell, S. Nakamura, Invention, development, and status of the blue light-emitting diode, the enabler of solid-state lighting, Comptes Rendus Phys. 19 (2018) 113–133. https://doi.org/10.1016/j.crhy.2017.12.001.
    [60] S. Nakamura, Background Story of the Invention of Efficient InGaN Blue-Light-Emitting Diodes (Nobel Lecture), Angew. Chemie - Int. Ed. 54 (2015) 7770–7788. https://doi.org/10.1002/anie.201500591.
    [61] Y. Zou, T. Wu, F. Fu, S. Bai, L. Cai, Z. Yuan, Y. Li, R. Li, W. Xu, T. Song, Y. Yang, X. Gao, F. Gao, B. Sun, Thermal-induced interface degradation in perovskite light-emitting diodes, J. Mater. Chem. C. 8 (2020) 15079–15085. https://doi.org/10.1039/d0tc03816d.
    [62] M. Loi, A. Villani, F. Paciolla, G. Mulè, C. Paciolla, Challenges and opportunities of light-emitting diode (Led) as key to modulate antioxidant compounds in plants. a review, Antioxidants. 10 (2021) 1–35. https://doi.org/10.3390/antiox10010042.
    [63] A. Prasad, L. Du, M. Zubair, S. Subedi, A. Ullah, M.S. Roopesh, Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment, Food Eng. Rev. 12 (2020) 268–289. https://doi.org/10.1007/s12393-020-09221-4.
    [64] H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao, Y. Bai, Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes, J. Mater. Chem. C. 10 (2022) 13590–13610. https://doi.org/10.1039/d2tc01869a.
    [65] E.P. Wagner, Investigating bandgap energies, materials, and design of light-emitting diodes, J. Chem. Educ. 93 (2016) 1289–1298. https://doi.org/10.1021/acs.jchemed.6b00165.
    [66] D. Yuan, Q. Liu, Calculation of the Photon Speed and Photon Energy Discussions, Springer Proc. Phys. 270 (2022) 419–436. https://doi.org/10.1007/978-981-16-7258-3_40.
    [67] D. Myers, Radiometric instrumentation and measurements guide for photovoltaic performance testing, (1997) 148.
    [68] J.D. Bullough, J.C. Zwinkels, Photometry, colorimetry and radiometry: Issues and applications, J. Mod. Opt. 60 (2013) 1099. https://doi.org/10.1080/09500340.2013.846064.
    [69] A. Gracia, J.L. Torres, M. De Blas, A. García, R. Perez, Comparison of four luminance and radiance angular distribution models for radiance estimation, Sol. Energy. 85 (2011) 2202–2216. https://doi.org/10.1016/j.solener.2011.06.005.
    [70] R.U. Datla, A.C. Parr, 1. Introduction to Optical Radiometry, Exp. Methods Phys. Sci. 41 (2005) 1–34. https://doi.org/10.1016/S1079-4042(05)41001-2.
    [71] K. Wandachowicz, Calculation of Luminaires Using Radiance, Radiance Work. (2004). https://www.radiance-online.org/community/workshops/2004-fribourg/presentations/Wandachowicz_paper.pdf.
    [72] A. Rowlands, Fundamental optical formulae, 2017. https://doi.org/10.1088/978-0-7503-1242-4ch1.
    [73] H.R. Devi, O.Y. Bisen, S. Nanda, R. Nandan, K.K. Nanda, Internal versus external quantum efficiency of luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis, Curr. Sci. 121 (2021) 894. https://doi.org/10.18520/cs/v121/i7/894-898.
    [74] J.I. Shim, D.S. Shin, Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization, Nanophotonics. 7 (2018) 1601–1615. https://doi.org/10.1515/nanoph-2018-0094.
    [75] L. Xu, K. Fan, H. Sun, Z. Guo, Improving the external quantum efficiency of high-power gan-based flip-chip leds by using sidewall composite reflective micro structure, Micromachines. 12 (2021). https://doi.org/10.3390/mi12091073.
    [76] H.J. Eichler, A. Hermerschmidt, Light-induced dynamic gratings and photorefraction, 2006. https://doi.org/10.1007/0-387-25192-8_2.
    [77] S. Morab, M.M. Sundaram, A. Pivrikas, Review on Charge Carrier Transport in Inorganic and Organic Semiconductors, Coatings. 13 (2023). https://doi.org/10.3390/coatings13091657.
    [78] C. Sah, R.N. Noyce, W. Shockley, Junctions and P-N Junction Characteristics, Proc. IRE. 1 (1956) 1228–1243.
    [79] I.N. Volovichev, Y.G. Gurevich, Generation - Recombination processes in semiconductors, Semiconductors. 35 (2001) 306–315. https://doi.org/10.1134/1.1356153.
    [80] L. Zhang, Z. Zhuang, Q. Fang, X. Wang, Study on the Automatic Identification of ABX3 Perovskite Crystal Structure Based on the Bond-Valence Vector Sum, Materials (Basel). 16 (2023). https://doi.org/10.3390/ma16010334.
    [81] A.S.B. Ruyan, G. Rustum, Plugin-Fulltext-2, (2000) 3–26.
    [82] L. Jiang, T. Wu, L. Sun, Y.J. Li, A.L. Li, R.F. Lu, K. Zou, W.Q. Deng, First-principles screening of lead-free methylammonium metal iodine perovskites for photovoltaic application, J. Phys. Chem. C. 121 (2017). https://doi.org/10.1021/acs.jpcc.7b04685.
    [83] H. Peng, R. Tang, C. Deng, M. Li, T. Zhou, ABX3-type lead-free perovskites using superatom ions with tunable photovoltaic performances, J. Mater. Chem. A. 8 (2020) 21993–22000. https://doi.org/10.1039/d0ta07391a.
    [84] H. Cho, Y.H. Kim, C. Wolf, H.D. Lee, T.W. Lee, Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes, Adv. Mater. 30 (2018) 1–24. https://doi.org/10.1002/adma.201704587.
    [85] P. Barua, I. Hwang, Bulk Perovskite Crystal Properties Determined by Heterogeneous Nucleation and Growth, Materials (Basel). 16 (2023). https://doi.org/10.3390/ma16052110.
    [86] C. Kuang, Z. Hu, Z. Yuan, K. Wen, J. Qing, L. Kobera, S. Abbrent, J. Brus, C. Yin, H. Wang, W. Xu, J. Wang, S. Bai, F. Gao, Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes, Joule. 5 (2021) 618–630. https://doi.org/10.1016/j.joule.2021.01.003.
    [87] D.K. Lee, K.S. Lim, J.W. Lee, N.G. Park, Scalable perovskite coatingviaanti-solvent-free Lewis acid-base adduct engineering for efficient perovskite solar modules, J. Mater. Chem. A. 9 (2021) 3018–3028. https://doi.org/10.1039/d0ta10366g.
    [88] L. Zhao, K.M. Lee, K. Roh, S.U.Z. Khan, B.P. Rand, Improved Outcoupling Efficiency and Stability of Perovskite Light-Emitting Diodes using Thin Emitting Layers, Adv. Mater. 31 (2019) 1–6. https://doi.org/10.1002/adma.201805836.
    [89] T. Mahmoudi, W.Y. Rho, M. Kohan, Y.H. Im, S. Mathur, Y.B. Hahn, Suppression of Sn2+/Sn4+ oxidation in tin-based perovskite solar cells with graphene-tin quantum dots composites in active layer, Nano Energy. 90 (2021) 106495. https://doi.org/10.1016/j.nanoen.2021.106495.
    [90] N. Balachandran, T.M. Robert, T. Jayalatha, P.M. Neema, D. Mathew, J. Cyriac, Lead-free, mixed tin-copper perovskites with improved stability and optical properties, J. Alloys Compd. 879 (2021) 160325. https://doi.org/10.1016/j.jallcom.2021.160325.
    [91] G. Jang, H. Han, S. Ma, J. Lee, C. Uk Lee, W. Jeong, J. Son, D. Cho, J.-H. Kim, C. Park, J. Moon, Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes, Adv. Photonics. 5 (2023). https://doi.org/10.1117/1.ap.5.1.016001.
    [92] Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun, C.C.S. Chan, S. Ding, K. Wang, R. Chen, K.S. Wong, X. Lu, W.J. Yin, W.C.H. Choy, High-Performance Blue Perovskite Light-Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasi-2D Perovskite Layers, Adv. Mater. 33 (2021) 1–10. https://doi.org/10.1002/adma.202005570.
    [93] T.M. Koh, V. Shanmugam, X. Guo, S.S. Lim, O. Filonik, E.M. Herzig, P. Müller-Buschbaum, V. Swamy, S.T. Chien, S.G. Mhaisalkar, N. Mathews, Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics, J. Mater. Chem. A. 6 (2018) 2122–2128. https://doi.org/10.1039/c7ta09657g.
    [94] Y. Zhao, H. Xiang, R. Ran, W. Zhou, W. Wang, Z. Shao, Beyond two-dimension: One- and zero-dimensional halide perovskites as new-generation passivators for high-performance perovskite solar cells, J. Energy Chem. 83 (2023) 189–208. https://doi.org/10.1016/j.jechem.2023.04.025.
    [95] Z. Qin, S. Dai, V.G. Hadjiev, C. Wang, L. Xie, Y. Ni, C. Wu, G. Yang, S. Chen, L. Deng, Q. Yu, G. Feng, Z.M. Wang, J. Bao, Revealing the Origin of Luminescence Center in 0D Cs4PbBr6 Perovskite, Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b03426.
    [96] Y. Wang, S. Zhang, Y. Wang, J. Yan, X. Yao, M. Xu, X.W. Lei, G. Lin, C.Y. Yue, 0D triiodide hybrid halide perovskite for X-ray detection, Chem. Commun. 59 (2023) 9239–9242. https://doi.org/10.1039/d3cc01183f.
    [97] S. Hu, J. Pascual, W. Liu, T. Funasaki, M.A. Truong, S. Hira, R. Hashimoto, T. Morishita, K. Nakano, K. Tajima, R. Murdey, T. Nakamura, A. Wakamiya, A Universal Surface Treatment for p-i-n Perovskite Solar Cells, ACS Appl. Mater. Interfaces. 14 (2022) 56290–56297. https://doi.org/10.1021/acsami.2c15989.
    [98] J. Iskandar, C. Lee, A. Kurniawan, J. Iskandar, C. Lee, A. Kurniawan, H. Cheng, S. Liu, Article Improving the efficiency of near-IR perovskite LEDs via surface passivation and ultrathin interfacial layers Improving the efficiency of near-IR perovskite LEDs via surface passivation and ultrathin interfacial layers, Cell Reports Phys. Sci. (2022) 101170. https://doi.org/10.1016/j.xcrp.2022.101170.
    [99] M. Li, R. Begum, J. Fu, Q. Xu, T.M. Koh, S.A. Veldhuis, M. Grätzel, N. Mathews, S. Mhaisalkar, T.C. Sum, Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals, Nat. Commun. 9 (2018) 3–9. https://doi.org/10.1038/s41467-018-06596-1.
    [100] F. Zhang, H. Zhong, C. Chen, X.G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology, ACS Nano. 9 (2015) 4533–4542. https://doi.org/10.1021/acsnano.5b01154.
    [101] M.C. Brennan, J.E. Herr, T.S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, M. Kuno, Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals, J. Am. Chem. Soc. 139 (2017) 12201–12208. https://doi.org/10.1021/jacs.7b05683.
    [102] Y. Liu, Z. Li, J. Xu, Y. Dong, B. Chen, S.M. Park, D. Ma, S. Lee, J.E. Huang, S. Teale, O. Voznyy, E.H. Sargent, Wide-Bandgap Perovskite Quantum Dots in Perovskite Matrix for Sky-Blue Light-Emitting Diodes, J. Am. Chem. Soc. 144 (2022) 4009–4016. https://doi.org/10.1021/jacs.1c12556.
    [103] P. Vashishtha, D.Z. Metin, M.E. Cryer, K. Chen, J.M. Hodgkiss, N. Gaston, J.E. Halpert, Shape-, Size-, and Composition-Controlled Thallium Lead Halide Perovskite Nanowires and Nanocrystals with Tunable Band Gaps, Chem. Mater. 30 (2018) 2973–2982. https://doi.org/10.1021/acs.chemmater.8b00421.
    [104] Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes, B.P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics. 11 (2017) 108–115. https://doi.org/10.1038/nphoton.2016.269.
    [105] M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E.M. Beauregard, P. Kanjanaboos, Z. Lu, D.H. Kim, E.H. Sargent, Perovskite energy funnels for efficient light-emitting diodes, Nat. Nanotechnol. 11 (2016) 872–877. https://doi.org/10.1038/nnano.2016.110.
    [106] H.W. Chen, J.H. Lee, B.Y. Lin, S. Chen, S.T. Wu, Liquid crystal display and organic light-emitting diode display: present status and future perspectives, Light Sci. Appl. 7 (2018) 17168. https://doi.org/10.1038/lsa.2017.168.
    [107] M. Pylnev, A.M. Barbisan, T.C. Wei, Effect of wettability of substrate on metal halide perovskite growth, Appl. Surf. Sci. 541 (2021) 148559. https://doi.org/10.1016/j.apsusc.2020.148559.
    [108] D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, Y. Galagan, Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3, Nano Energy. 67 (2020). https://doi.org/10.1016/j.nanoen.2019.104186.
    [109] S. Tian, J. Chen, X. Lian, Y. Wang, Y. Zhang, W. Yang, G. Wu, W. Qiu, H. Chen, Engineering the underlying surface to manipulate the growth of 2D perovskites for highly efficient solar cells, J. Mater. Chem. A. 7 (2019) 14027–14032. https://doi.org/10.1039/c9ta03022k.
    [110] S. Bhaumik, M.R. Kar, B.N. Thorat, A. Bruno, S.G. Mhaisalkar, Vacuum-Processed Metal Halide Perovskite Light-Emitting Diodes: Prospects and Challenges, Chempluschem. 86 (2021) 558–573. https://doi.org/10.1002/cplu.202000795.
    [111] T. Wang, L.C. Jing, Z. Bao, P. Qian, W. Geng, A.S. Ethiraj, W.H. Geng, L. Chen, Q. Zhu, H.Z. Geng, Strong adhesion and high optoelectronic performance hybrid graphene/carbon nanotubes transparent conductive films for green-light OLED devices, Surfaces and Interfaces. 24 (2021) 101137. https://doi.org/10.1016/j.surfin.2021.101137.
    [112] G. Gökçeli, N. Karatepe, Improving the properties of indium tin oxide thin films by the incorporation of carbon nanotubes with solution-based techniques, Thin Solid Films. 697 (2020) 137844. https://doi.org/10.1016/j.tsf.2020.137844.
    [113] X. Xie, G. Liu, C. Xu, S. Li, Z. Liu, E.C. Lee, Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells, Org. Electron. 44 (2017) 120–125. https://doi.org/10.1016/j.orgel.2017.02.011.
    [114] J.S. Bangsund, J.R. Van Sambeek, N.M. Concannon, R.J. Holmes, Sub-turn-on exciton quenching due to molecular orientation and polarization in organic light-emitting devices, Sci. Adv. 6 (2020) 1–11. https://doi.org/10.1126/sciadv.abb2659.
    [115] M.F. Mohamad Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, N. Ahmad Ludin, A.R. Bin Mohd Yusoff, J. Jang, M.A. Mat Teridi, The architecture of the electron transport layer for a perovskite solar cell, J. Mater. Chem. C. 6 (2018) 682–712. https://doi.org/10.1039/c7tc04649a.
    [116] H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgr, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices, Superlattices Microstruct. 48 (2010) 458–484. https://doi.org/10.1016/j.spmi.2010.08.011.
    [117] C.C. Wu, Highly flexible touch screen panel fabricated with silver-inserted transparent ITO triple-layer structures, RSC Adv. 8 (2018) 11862–11870. https://doi.org/10.1039/c7ra13550e.
    [118] J.R. Vig, J.W.L. Bus, UV/Ozone Cleaning of Surfaces, IEEE Trans. Parts, Hybrids, Packag. 12 (1976) 365–370. https://doi.org/10.1109/TPHP.1976.1135156.
    [119] F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li, F. Zhu, Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes, J. Mater. Chem. C. 6 (2018) 1573–1578. https://doi.org/10.1039/c7tc04631f.
    [120] R. Hiesgen, K.A. Friedrich, Atomic force microscopy, PEM Fuel Cell Diagnostic Tools. (2011) 395–421. https://doi.org/10.4011/shikizai.93.321.
    [121] A.M. Joshua, G. Cheng, E. V. Lau, Soft matter analysis via atomic force microscopy (AFM): A review, Appl. Surf. Sci. Adv. 17 (2023) 100448. https://doi.org/10.1016/j.apsadv.2023.100448.
    [122] Y.F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, D.J. Müller, Imaging modes of atomic force microscopy for application in molecular and cell biology, Nat. Nanotechnol. 12 (2017) 295–307. https://doi.org/10.1038/nnano.2017.45.
    [123] R. Xu, J. Guo, S. Mi, H. Wen, F. Pang, W. Ji, Z. Cheng, Advanced atomic force microscopies and their applications in two-dimensional materials: A review, Mater. Futur. 1 (2022). https://doi.org/10.1088/2752-5724/ac8aba.
    [124] A.L. Ryland, X-ray diffraction, J. Chem. Educ. 35 (1958) 80–83. https://doi.org/10.1021/ed035p80.
    [125] A. Ali, Y.W. Chiang, R.M. Santos, X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions, Minerals. 12 (2022). https://doi.org/10.3390/min12020205.
    [126] M.M. Reventos, J.M.A. Descarrega, Revista de la Sociedad Geológica de España 25 ( 3-4 ) MINERALOGY AND GEOLOGY : THE ROLE OF CRYSTALLOGRAPHY SINCE THE DISCOVERY OF X-RAY DIFFRACTION IN 1912 Mineralogía y Geología : el papel de la Cristalografía desde el descubrimiento de la difracción de, Geol. Phys. (2012).
    [127] C.G. Pope, X-ray diffraction and the bragg equation, J. Chem. Educ. 74 (1997) 129–131. https://doi.org/10.1021/ed074p129.
    [128] L.R.B. Elton, D.F. Jackson, X-Ray Diffraction and the Bragg Law, Am. J. Phys. 34 (1966) 1036–1038. https://doi.org/10.1119/1.1972439.
    [129] C.F. Holder, R.E. Schaak, Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials, ACS Nano. 13 (2019) 7359–7365. https://doi.org/10.1021/acsnano.9b05157.
    [130] R.H. Lipson, Ultraviolet and Visible Absorption Spectrometers, Digit. Encycl. Appl. Phys. (2009) 353–380. https://doi.org/10.1002/3527600434.eap682.
    [131] R.A. Soni, R.S. Rana, S.S. Godara, Characterization Tools and Techniques for Nanomaterials and Nanocomposites, Nanomater. Nanocomposites. (2021) 61–83. https://doi.org/10.1201/9781003160946-6.
    [132] S. Sagadevan, P. Murugasen, Studies on Optical , Mechanical and Electrical Properties of Organic Nonlinear Optical p-Toluidine p-Toluenesulfonate Single, (2014) 99–110.
    [133] P. Kimber, F. Plasser, Energy Component Analysis for Electronically Excited States of Molecules: Why the Lowest Excited State Is Not Always the HOMO/LUMO Transition, J. Chem. Theory Comput. 19 (2023) 2340–2352. https://doi.org/10.1021/acs.jctc.3c00125.
    [134] T.H. Gfroerer, Photoluminescence in Analysis of Surfaces and Interfaces, Encycl. Anal. Chem. (2000). https://doi.org/10.1002/9780470027318.a2510.
    [135] M. Tebyetekerwa, J. Zhang, Z. Xu, T.N. Truong, Z. Yin, Y. Lu, S. Ramakrishna, D. Macdonald, H.T. Nguyen, Mechanisms and applications of steady-state photoluminescence spectroscopy in two-dimensional transition-metal dichalcogenides, ACS Nano. 14 (2020) 14579–14604. https://doi.org/10.1021/acsnano.0c08668.
    [136] L. Brand, M.L. Johnson, An Introduction to Fluorescence Spectroscopy, (2011) 15. http://books.google.com/books?id=GgFXweh0hmQC&pgis=1.
    [137] S. Agnello, Spectroscopy for Materials Characterization, 2021. https://doi.org/10.1002/9781119698029.
    [138] F.P. García De Arquer, A. Armin, P. Meredith, E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors, Nat. Rev. Mater. 2 (2017) 1–16. https://doi.org/10.1038/natrevmats.2016.100.
    [139] B. Wu, K. Fu, N. Yantara, G. Xing, S. Sun, T.C. Sum, N. Mathews, Charge Accumulation and Hysteresis in Perovskite-Based Solar Cells: An Electro-Optical Analysis, Adv. Energy Mater. 5 (2015) 1–8. https://doi.org/10.1002/aenm.201500829.
    [140] Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang, J. Wei, L. Zhang, M. Lv, C. Qin, Y. Liu, M. Yuan, Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes, Nat. Commun. 12 (2021) 1–10. https://doi.org/10.1038/s41467-020-20555-9.
    [141] O. Shargaieva, H. Näsström, J. Li, D.M. Többens, E.L. Unger, Temperature-Dependent Crystallization Mechanisms of Methylammonium Lead Iodide Perovskite From Different Solvents, Front. Energy Res. 9 (2021). https://doi.org/10.3389/fenrg.2021.749604.
    [142] M. Ledinsky, T. Schönfeldová, J. Holovský, E. Aydin, Z. Hájková, L. Landová, N. Neyková, A. Fejfar, S. De Wolf, Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites, J. Phys. Chem. Lett. 10 (2019) 1368–1373. https://doi.org/10.1021/acs.jpclett.9b00138.
    [143] D. Prochowicz, P. Yadav, A. Kalam, R. Runjhun, A. Mahapatra, M.M. Tavakoli, S. Trivedi, H.T. Dastjerdi, P. Kumar, J. Lewiński, M. Pandey, Interpretation of Resistance, Capacitance, Defect Density, and Activation Energy Levels in Single-Crystalline MAPbI3, J. Phys. Chem. C. 124 (2020) 3496–3502. https://doi.org/10.1021/acs.jpcc.9b11343.
    [144] A. Mahapatra, R. Runjhun, J. Nawrocki, J. Lewiński, A. Kalam, P. Kumar, S. Trivedi, M.M. Tavakoli, D. Prochowicz, P. Yadav, Elucidation of the role of guanidinium incorporation in single-crystalline MAPbI3 perovskite on ion migration and activation energy, Phys. Chem. Chem. Phys. 22 (2020) 11467–11473. https://doi.org/10.1039/d0cp01119c.
    [145] S. Pradhan, M. Dalmases, G. Konstantatos, Origin of the Below-Bandgap Turn-On Voltage in Light-Emitting Diodes and the High VOC in Solar Cells Comprising Colloidal Quantum Dots with an Engineered Density of States, J. Phys. Chem. Lett. 10 (2019) 3029–3034. https://doi.org/10.1021/acs.jpclett.9b01154.
    [146] H. Shi, W. Jing, W. Liu, Y. Li, Z. Li, B. Qiao, S. Zhao, Z. Xu, D. Song, Key Factors Governing the External Quantum Efficiency of Thermally Activated Delayed Fluorescence Organic Light-Emitting Devices: Evidence from Machine Learning, ACS Omega. 7 (2022) 7893–7900. https://doi.org/10.1021/acsomega.1c06820.
    [147] J.-I. Shim, D.-S. Shin, C.-H. Oh, H. Jung, Review—Active Efficiency as a Key Parameter for Understanding the Efficiency Droop in InGaN-Based Light-Emitting Diodes, ECS J. Solid State Sci. Technol. 9 (2020) 015013. https://doi.org/10.1149/2.0312001jss.
    [148] J.M. Kim, C.H. Lee, J.J. Kim, Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes, Appl. Phys. Lett. 111 (2017) 2–7. https://doi.org/10.1063/1.5004623.
    [149] N.R. Al Amin, K.K. Kesavan, S. Biring, C.C. Lee, T.H. Yeh, T.Y. Ko, S.W. Liu, K.T. Wong, A Comparative Study via Photophysical and Electrical Characterizations on Interfacial and Bulk Exciplex-Forming Systems for Efficient Organic Light-Emitting Diodes, ACS Appl. Electron. Mater. 2 (2020) 1011–1019. https://doi.org/10.1021/acsaelm.0c00062.
    [150] C.Y. Chang, W.L. Hong, P.H. Lo, T.H. Wen, S.F. Horng, C.L. Hsu, Y.C. Chao, Perovskite white light-emitting diodes with a perovskite emissive layer blended with rhodamine 6G, J. Mater. Chem. C. 8 (2020) 12951–12958. https://doi.org/10.1039/d0tc02471f.
    [151] X. Liang, R.W. Baker, K. Wu, W. Deng, D. Ferdani, P.S. Kubiak, F. Marken, L. Torrente-Murciano, P.J. Cameron, Continuous low temperature synthesis of MAPbX3 perovskite nanocrystals in a flow reactor, React. Chem. Eng. 3 (2018) 640–644. https://doi.org/10.1039/c8re00098k.
    [152] X. Yang, H. Gu, S. Li, J. Li, H. Shi, J. Zhang, N. Liu, Z. Liao, W. Xu, Y. Tan, Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes, RSC Adv. 9 (2019) 34506–34511. https://doi.org/10.1039/c9ra05053a.
    [153] C.Y. Huang, S.P. Chang, A.G. Ansay, Z.H. Wang, C.C. Yang, Ambient-processed, additive-assisted CsPbBr3 perovskite light-emitting diodes with colloidal NiOx nanoparticles for efficient hole transporting, Coatings. 10 (2020). https://doi.org/10.3390/coatings10040336.
    [154] C.Y. Chang, C.Y. Chu, Y.C. Huang, C.W. Huang, S.Y. Chang, C.A. Chen, C.Y. Chao, W.F. Su, Tuning perovskite morphology by polymer additive for high efficiency solar cell, ACS Appl. Mater. Interfaces. 7 (2015) 4955–4961. https://doi.org/10.1021/acsami.5b00052.
    [155] Q.Q. Ge, J. Ding, J. Liu, J.Y. Ma, Y.X. Chen, X.X. Gao, L.J. Wan, J.S. Hu, Promoting crystalline grain growth and healing pinholes by water vapor modulated post-annealing for enhancing the efficiency of planar perovskite solar cells, J. Mater. Chem. A. 4 (2016) 13458–13467. https://doi.org/10.1039/c6ta05288f.
    [156] R. Rai, T. Triloki, B.K. Singh, X-ray diffraction line profile analysis of KBr thin films, Appl. Phys. A Mater. Sci. Process. 122 (2016) 1–11. https://doi.org/10.1007/s00339-016-0293-3.
    [157] G. Zheng, C. Zhu, J. Ma, X. Zhang, G. Tang, R. Li, Y. Chen, L. Li, J. Hu, J. Hong, Q. Chen, X. Gao, H. Zhou, Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade, Nat. Commun. 9 (2018) 1–11. https://doi.org/10.1038/s41467-018-05076-w.
    [158] S. Zhang, S. Wu, R. Chen, W. Chen, Y. Huang, H. Zhu, Z. Yang, W. Chen, Controlling Orientation Diversity of Mixed Ion Perovskites: Reduced Crystal Microstrain and Improved Structural Stability, J. Phys. Chem. Lett. 10 (2019) 2898–2903. https://doi.org/10.1021/acs.jpclett.9b01180.
    [159] Z.-L. Tseng, S.-H. Lin, J.-F. Tang, Y.-C. Huang, H.-C. Cheng, W.-L. Huang, Y.-T. Lee, L.-C. Chen, Polymeric Hole Transport Materials for Red CsPbI3 Perovskite Quantum-Dot Light-Emitting Diodes, Polymers (Basel). 13 (2021) 896. https://doi.org/10.3390/polym13060896.
    [160] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics. 13 (2019) 460–466. https://doi.org/10.1038/s41566-019-0398-2.
    [161] M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw, P. Sonar, T. Tesfamichael, H. Wang, Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightness, Nano-Micro Lett. 14 (2022). https://doi.org/10.1007/s40820-022-00813-9.
    [162] X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, J. You, Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation, Nat. Commun. 9 (2018) 2–9. https://doi.org/10.1038/s41467-018-02978-7.
    [163] E.G. Moloney, V. Yeddu, M.I. Saidaminov, Strain Engineering in Halide Perovskites, ACS Mater. Lett. 2 (2020) 1495–1508. https://doi.org/10.1021/acsmaterialslett.0c00308.
    [164] C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Strain engineering in perovskite solar cells and its impacts on carrier dynamics, Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-08507-4.
    [165] W. Zhang, J. Xiong, J. Li, W.A. Daoud, Guanidinium induced phase separated perovskite layer for efficient and highly stable solar cells, J. Mater. Chem. A. 7 (2019) 9486–9496. https://doi.org/10.1039/c9ta01893j.
    [166] O. Nazarenko, M.R. Kotyrba, S. Yakunin, M. Aebli, G. Rainò, B.M. Benin, M. Wörle, M. V. Kovalenko, Guanidinium-Formamidinium Lead Iodide: A Layered Perovskite-Related Compound with Red Luminescence at Room Temperature, J. Am. Chem. Soc. 140 (2018) 3850–3853. https://doi.org/10.1021/jacs.8b00194.
    [167] R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston, L.M. Herz, Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films, Adv. Funct. Mater. 25 (2015) 6218–6227. https://doi.org/10.1002/adfm.201502340.
    [168] C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films, APL Mater. 2 (2014). https://doi.org/10.1063/1.4891595.
    [169] Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica. 34 (1967) 149–154. https://doi.org/10.1016/0031-8914(67)90062-6.
    [170] S.M. Lee, C.J. Moon, H. Lim, Y. Lee, M.Y. Choi, J. Bang, Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr3 and CsPb(Br/I)3 Quantum Dots at Low Temperature, J. Phys. Chem. C. 121 (2017) 26054–26062. https://doi.org/10.1021/acs.jpcc.7b06301.
    [171] C. Yu, Z. Chen, J. Wang, W. Pfenninger, N. Vockic, J.T. Kenney, K. Shum, Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3, J. Appl. Phys. 110 (2011). https://doi.org/10.1063/1.3638699.
    [172] Y. Shi, W. Wu, H. Dong, G. Li, K. Xi, G. Divitini, C. Ran, F. Yuan, M. Zhang, B. Jiao, X. Hou, Z. Wu, A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance, Adv. Mater. 30 (2018) 1–10. https://doi.org/10.1002/adma.201800251.
    [173] W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A.J. Barker, E. Tyukalova, Z. Hu, M. Kawecki, H. Wang, Z. Yan, X. Liu, X. Shi, K. Uvdal, M. Fahlman, W. Zhang, M. Duchamp, J.M. Liu, A. Petrozza, J. Wang, L.M. Liu, W. Huang, F. Gao, Rational molecular passivation for high-performance perovskite light-emitting diodes, Nat. Photonics. 13 (2019) 418–424. https://doi.org/10.1038/s41566-019-0390-x.
    [174] P.I. Shih, C.H. Chien, C.Y. Chuang, C.F. Shu, C.H. Yang, J.H. Chen, Y. Chi, Novel host material for highly efficient blue phosphorescent OLEDs, J. Mater. Chem. 17 (2007) 1692–1698. https://doi.org/10.1039/b616043c.
    [175] V. Shrotriya, Y. Yang, Capacitance-voltage characterization of polymer light-emitting diodes, J. Appl. Phys. 97 (2005). https://doi.org/10.1063/1.1857053.
    [176] T.H. Han, W. Song, T.W. Lee, Elucidating the crucial role of hole injection layer in degradation of organic light-emitting diodes, ACS Appl. Mater. Interfaces. 7 (2015) 3117–3125. https://doi.org/10.1021/am5072628.
    [177] S.M. Han, K.P. Kim, D.C. Choo, T.W. Kim, J.H. Seo, Y.K. Kim, Equivalent circuit models in organic light-emitting diodes designed using a cole-cole plot, Mol. Cryst. Liq. Cryst. 470 (2007) 279–287. https://doi.org/10.1080/15421400701495989.
    [178] C.C. Chen, B.C. Huang, M.S. Lin, Y.J. Lu, T.Y. Cho, C.H. Chang, K.C. Tien, S.H. Liu, T.H. Ke, C.C. Wu, Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials, Org. Electron. 11 (2010) 1901–1908. https://doi.org/10.1016/j.orgel.2010.09.005.
    [179] F. Ye, Q. Shan, H. Zeng, W.C.H. Choy, Operational and Spectral Stability of Perovskite Light-Emitting Diodes, ACS Energy Lett. 6 (2021) 3114–3131. https://doi.org/10.1021/acsenergylett.1c01545.
    [180] L.Q. Xie, L. Chen, Z.A. Nan, H.X. Lin, T. Wang, D.P. Zhan, J.W. Yan, B.W. Mao, Z.Q. Tian, Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals, J. Am. Chem. Soc. 139 (2017) 3320–3323. https://doi.org/10.1021/jacs.6b12432.
    [181] H. Lu, A. Krishna, S.M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells, IScience. 23 (2020) 101359. https://doi.org/10.1016/j.isci.2020.101359.
    [182] L. Zhao, R.A. Kerner, Z. Xiao, Y.L. Lin, K.M. Lee, J. Schwartz, B.P. Rand, Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices, ACS Energy Lett. 1 (2016) 595–602. https://doi.org/10.1021/acsenergylett.6b00320.
    [183] Z. Lü, Z. Deng, J. Zheng, Y. Zou, Z. Chen, D. Xu, Y. Wang, Ohmic contact and space-charge-limited current in molybdenum oxide modified devices, Phys. E Low-Dimensional Syst. Nanostructures. 41 (2009) 1806–1809. https://doi.org/10.1016/j.physe.2009.07.003.
    [184] M. Imran, N.A. Khan, Perovskite phase formation in formamidinium–methylammonium lead iodide bromide (FAPbI3)1-x(MAPbBr3)x materials and their morphological, optical and photovoltaic properties, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1–9. https://doi.org/10.1007/s00339-019-2866-4.
    [185] P. Wang, N. Chai, C. Wang, J. Hua, F. Huang, Y. Peng, J. Zhong, Z. Ku, Y.B. Cheng, Enhancing the thermal stability of the carbon-based perovskite solar cells by using a Cs: XFA1- xPbBrxI3- x light absorber, RSC Adv. 9 (2019) 11877–11881. https://doi.org/10.1039/c9ra00043g.
    [186] W. Zhao, J. Zhang, F. Kong, T. Ye, Application of Perovskite Nanocrystals as Fluorescent Probes in the Detection of Agriculture- and Food-Related Hazardous Substances, Polymers (Basel). 15 (2023). https://doi.org/10.3390/polym15132873.
    [187] M. Enhessari, A. Salehabadi, Perovskites-Based Nanomaterials for Chemical Sensors, Progresses Chem. Sens. (2016). https://doi.org/10.5772/62559.
    [188] M.A. Stoeckel, M. Gobbi, S. Bonacchi, F. Liscio, L. Ferlauto, E. Orgiu, P. Samorì, Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite, Adv. Mater. 29 (2017) 1–7. https://doi.org/10.1002/adma.201702469.
    [189] M. Shellaiah, K.W. Sun, Review on Sensing Applications of Perovskite Nanomaterials, Chemosensors. 8 (2020). https://doi.org/10.3390/chemosensors8030055.
    [190] G. Koch, M. Hävecker, D. Teschner, S.J. Carey, Y. Wang, P. Kube, W. Hetaba, T. Lunkenbein, G. Auffermann, O. Timpe, F. Rosowski, R. Schlögl, A. Trunschke, Surface Conditions That Constrain Alkane Oxidation on Perovskites, ACS Catal. 10 (2020) 7007–7020. https://doi.org/10.1021/acscatal.0c01289.
    [191] J. Shen, Q. Zhu, Stability strategies of perovskite quantum dots and their extended applications in extreme environment: A review, Mater. Res. Bull. 156 (2022) 111987. https://doi.org/10.1016/j.materresbull.2022.111987.
    [192] G. Shi, H. Wang, Y. Zhang, C. Cheng, T. Zhai, B. Chen, X. Liu, R. Jono, X. Mao, Y. Liu, X. Zhang, X. Ling, Y. Zhang, X. Meng, Y. Chen, S. Duhm, L. Zhang, T. Li, L. Wang, S. Xiong, T. Sagawa, T. Kubo, H. Segawa, Q. Shen, Z. Liu, W. Ma, The effect of water on colloidal quantum dot solar cells, Nat. Commun. 12 (2021) 1–12. https://doi.org/10.1038/s41467-021-24614-7.
    [193] A.K. Eessaa, A.M. El-Shamy, Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies, Microelectron. Eng. 279 (2023) 112061. https://doi.org/10.1016/j.mee.2023.112061.
    [194] C.H. Lin, C.Y. Kang, T.Z. Wu, C.L. Tsai, C.W. Sher, X. Guan, P.T. Lee, T. Wu, C.H. Ho, H.C. Kuo, J.H. He, Giant Optical Anisotropy of Perovskite Nanowire Array Films, Adv. Funct. Mater. 30 (2020) 1–7. https://doi.org/10.1002/adfm.201909275.
    [195] A.M. Md Jani, D. Losic, N.H. Voelcker, Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications, Prog. Mater. Sci. 58 (2013) 636–704. https://doi.org/10.1016/j.pmatsci.2013.01.002.
    [196] B.M. Khan, Applications of Anodic Aluminum Oxide Nanomaterials, (2021) 1–5.
    [197] X. Cheng, C. Tang, C. Yan, J. Du, A. Chen, X. Liu, L. Jewell, Q. Zhang, Preparation of porous carbon spheres and their application as anode materials for lithium-ion batteries: A review, Mater. Today Nano. 22 (2023). https://doi.org/10.1016/j.mtnano.2023.100321.
    [198] P. Kapruwan, J. Ferré-Borrull, L.F. Marsal, Nanoporous Anodic Alumina Platforms for Drug Delivery Applications: Recent Advances and Perspective, Adv. Mater. Interfaces. 7 (2020) 1–17. https://doi.org/10.1002/admi.202001133.
    [199] S. Liu, Z. Xiong, C. Zhu, M. Li, M. Zheng, W. Shen, Fast anodization fabrication of AAO and barrier perforation process on ITO glass, Nanoscale Res. Lett. 9 (2014) 1–8. https://doi.org/10.1186/1556-276X-9-159.
    [200] W. Lee, S.J. Park, Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures, Chem. Rev. 114 (2014) 7487–7556. https://doi.org/10.1021/cr500002z.
    [201] R. Ferreira, M. Shaikh, S.K. Jakka, J. Deuermeier, P. Barquinha, S. Ghosh, E. Fortunato, R. Martins, S. Jana, Bandlike Transport in FaPbBr3Quantum Dot Phototransistor with High Hole Mobility and Ultrahigh Photodetectivity, Nano Lett. 22 (2022) 9020–9026. https://doi.org/10.1021/acs.nanolett.2c03317.
    [202] M. Rwaimi, C.G. Bailey, P.J. Shaw, T.M. Mercier, C. Krishnan, T. Rahman, P.G. Lagoudakis, R.H. Horng, S.A. Boden, M.D.B. Charlton, FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells, Sol. Energy Mater. Sol. Cells. 234 (2022) 1–10. https://doi.org/10.1016/j.solmat.2021.111406.
    [203] Z. Liu, C.H. Lin, B.R. Hyun, C.W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.H. Ho, H.C. Kuo, J.H. He, Micro-light-emitting diodes with quantum dots in display technology, Light Sci. Appl. 9 (2020) 1–23. https://doi.org/10.1038/s41377-020-0268-1.
    [204] Z. Wang, X. Dong, S. Zhou, Z. Xie, Z. Zalevsky, Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing, NPG Asia Mater. 13 (2021). https://doi.org/10.1038/s41427-020-00269-6.

    無法下載圖示 全文公開日期 2026/01/31 (校內網路)
    全文公開日期 2026/01/31 (校外網路)
    全文公開日期 2026/01/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE