簡易檢索 / 詳目顯示

研究生: Pavani Pannuru
Pavani Pannuru
論文名稱: 蛋白質分子在含有選定之生物相容緩衝劑水溶液中之安定性研究
Stability Studies for the Proteins in the Aqueous Solutions Containing Selected Biological Buffers
指導教授: 李明哲
Lee, Ming-Jer
口試委員: 洪桂彬
Gui-Bing Hong
蘇至善
Chie-Shaan Su
陳立仁
Li-Jen Chen
李夢輝
Meng-Hui Li
蔡伸隆
Tsai, Shen-Long
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 198
中文關鍵詞: Varius proteinsBiological buffersProtein stabilityBiophysical techniques
外文關鍵詞: Varius proteins, Biological buffers, Protein stability, Biophysical techniques
相關次數: 點閱:214下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先探討生物緩衝溶劑(TRIS,TAPS,TES)對溶菌酶穩定性的影響,我們進行了各種生物物理技術分析,如紫外線可見光、螢光、傅里葉變換紅外光譜(FTIR)和圓二色光譜(CD)和動態光散射(DLS)。研究結果顯示這三種緩衝劑即使在較高溫度下也能保持溶菌酶的穩定性,且在較高濃度的緩衝溶液中穩定溶菌酶的結構,在這三種緩衝劑中,TRIS和TES對溶菌酶分子來說是較好的穩定劑,而TAPS緩衝液則是一種相對較弱的穩定劑。
    本研究也擇定生物緩衝劑對鳳梨蛋白酶(BM)穩定性的影響為另一探討的主題,通過各種光譜技術瞭解TRIS、TAPS和TES緩衝劑對BM結構的影響。BM酶的穩定性取決於緩衝液的濃度,利用各種生物物理技術,發現BM結構在不同濃度的緩衝劑下,折疊狀態仍能保持完整。結果表明這三種緩衝劑中,TAPS是BM結構的最佳穩定劑,TES是中等穩定劑,TRIS則是弱穩定劑。
    我們也透過各種生物物理技術進行血紅蛋白(Hb)與緩衝劑在不同濃度下分子間相互的作用探討。螢光光譜分析的結果表明添加這些生物緩衝劑可增加Hb色氨酸周圍的疏水性,Hb的熱穩定轉變溫度(Tm)隨著生物緩衝液濃度的增加而逐漸增加,實驗證實生物緩衝劑對Hb的結構有影響。三種緩衝液中,TRIS是Hb最強的穩定劑,TES是中等穩定劑,TAPS是弱穩定劑。
    此外,我們也探討了在普通緩衝磷酸鹽緩衝液(PBS)存在下,溶菌酶、鳳梨蛋白酶(BM)、血紅蛋白(Hb)和人血清白蛋白(HSA)的穩定性,將每種蛋白質以不同濃度加入到PBS緩衝溶液中,所有樣品均採用各種生物物理技術進行分析。分析結果表明在施加外部因子下,PBS緩衝溶液對酶/蛋白質結構具有很強的保護作用。
    分析結果證實本研究所使用的緩衝劑對所選擇的蛋白質/酶均有穩定劑的作用,這些緩衝液對蛋白質/酶均具有保護的能力。然而,在加入更高濃度的PBS緩衝溶液的情況下,Hb結構會受到干擾,這證實緩衝液的類型和濃度會對蛋白質/酶的穩定性有不同程度的影響。本研究表明所擇定的緩衝溶液是具生物相容性的溶劑,可以有效提高蛋白質的穩定性,適於替代傳統揮發性有機化合物和昂貴的新型溶劑。


    Abstract

    In the present study, the effects of biological buffers including tris (hydroxymethyl) aminomethane (TRIS), N-[tris (hydroxymethyl) methyl]-3-aminopropanesulfonic acid (TAPS), and N-[tris (hydroxymethyl) methyl]-2-aminoethanesulfonic-acid (TES) on the stability of lysozyme have been investigated. To explore the interferences between lysozyme and buffer system, we have performed various biophysical techniques such as UV-visible, fluorescence, Fourier transforms infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy and dynamic light scattering (DLS). Our results reveals that these three buffers enhance the lysozyme thermal stability even at higher temperatures and stabilize the lysozyme structure at higher concentrations of the buffer solutions. Among these three buffers, TRIS and TES buffers are better stabilizers for the lysozyme molecule and the TAPS buffer is a relatively poor stabilizer.
    The effects of the selected biological buffers on the stability of bromelain (BM) enzyme are also studied in this work. This study delineates the influences of TRIS, TAPS and TES buffers on the structure of BM by various spectroscopic techniques. The stability of the BM enzyme is dependent on the concentrations of buffers. Using various biophysical techniques, we found that that the folded state of BM structure remains intact in the different concentrations of the studied buffers. The results illustrate that among these three buffers, TAPS buffer is the best stabilizer for BM structure, TES buffer is a moderate stabilizer and the TRIS buffer is a weak stabilizer.
    Furthermore, the biomolecular interactions between hemoglobin (Hb) and the selected biological buffers at different concentrations have been investigated by using various biophysical techniques. Fluorescence results reveal that the addition of biological buffers increases the hydrophobicity around the tryptophan environment of Hb. The thermal stability of Hb i.e., the transition temperature (Tm), were found to be gradually increases with increasing the concentrations of the biological buffers. The experimental evidences also reveal that biological buffers have influences on the Hb’s structure. Out of these three buffers, TRIS is the strongest stabilizer for Hb, while TES buffer is a moderate and TAPS buffer is a weak stabilizer.
    Additionally, we also explored the stability of lysozyme, BM, Hb and human serum albumin (HSA) in presence of common buffer phosphate buffer saline (PBS). Each protein were added into the PBS buffer solutions at different concentrations. All the samples were analyzed with various biophysical techniques. The analysis results show that PBS buffer solution has great ability to protect enzyme/proteins structures from external additive factors.
    The results of the analyses proved that all the selected buffers behave as stabilizers for the selected protein/enzymes. This confirms the potentiality of all these buffers are protecting agents for the proteins/enzymes. However, in case of Hb structure perturbed with the addition of higher concentrations of PBS buffer solution. It also established that the type and concentrations of buffer can effectively influences on the protein/enzyme stability. Generally, our study reveals that the selected buffer solutions are more suitable as biocompatible solvents for the structure and can enhances the stability of proteins. The present study is very useful for providing the alternative media to replace traditional volatile organic compounds or expensive modern solvents for biochemical applications.

    Table of contents 摘要 I Abstract III Acknowledgements VI Table of contents IX Nomenclature XIII List of Tables XV List of Figures XVII 1. Introduction 1 1.1. An overview of biological buffers 1 1.2. Buffers properties 1 1.3. Important applications of buffers in various fields 2 1.3.1. Buffers importance in biological systems 2 1.3.2. Buffers importance in industries 3 1.3.2.1. Pharmaceutical industries 3 1.3.2.2. Fermentation and food industries 4 1.3.3. Buffers in nature 5 1.4. Biological buffers requirements 6 1.4.1. Good’s buffers characteristics 10 1.5. Description of proteins 10 1.5.1. Primary structure 12 1.5.3. Tertiary structure 15 1.5.4. Quaternary structure 17 1.6. Interfaces present in protein and protein folding 18 1.7. Biological buffers role in protein stabilization 22 2. Experimental Section 28 2.1. Materials 28 2.2. Sample preparation 28 2.3.1. An overview of the structure of lysozyme 30 2.3.2. An overview of the structure of hemoglobin (Hb) 31 2.3.3. An overview of the structure of stem bromelain (BM) 32 2.3.4. An overview of the structure of human serum albumin (HSA) 33 2.4. Analysis techniques 34 2.4.1. UV-visible spectra measurements 34 2.4.3. Thermal fluorescence analysis 37 2.4.4. Fourier-transform infrared (FTIR) spectroscopy 39 2.4.5. Circular dichroism (CD) 40 2.4.6. Dynamic light scattering (DLS) 42 3. Results and Discussion 45 3.1. Biological buffers effects on the stability of lysozyme 45 3.1.1. UV-Vis Spectral analysis 46 3.1.2. Fluorescence spectra analysis 47 3.1.3. Thermal fluorescence analysis 48 3.1.4. Fourier transform infrared (FTIR) spectra analysis 49 3.1.5. Circular dichroism (CD) analysis 50 3.1.6. Dynamic light scattering (DLS) 51 3.2. Investigation of the interaction of selected buffers with Bromelain (BM) 68 3.2.1. UV-Vis Spectral analysis 69 3.2.2. Fluorescence spectroscopy analysis for BM in the selected buffers 70 3.2.3. Thermal stability of BM in presence of selected biological buffers 71 3.2.4. FTIR characterization of structural changes of BM in presence of biological buffers 72 3.2.5. Circular dichroism (CD) study of BM in the presence of biological buffers 73 3.2.6. Analysis of the conformational size of BM in biological buffers by using dynamic light scattering (DLS) 75 3.3. Biomolecular interactions of selected buffers with hemoglobin 92 3.3.1. UV-Vis Spectra analysis of Hb in the presence of biological buffers 93 3.3.3. Thermal stability of Hb in the presence of biological buffers 96 3.3.4. Fourier transform infrared (FTIR) spectroscopy 97 3.3.5. Circular dichroism (CD) spectroscopy 98 3.3.6. Dynamic light scattering (DLS) 99 4. Phosphate buffer saline effects on the stability of various proteins 120 4.1. UV-Vis spectroscopic analysis 121 4.2. Fluorescence spectroscopy 123 4.3. Thermal fluorescence analysis 126 4.4. FTIR spectroscopy analysis 127 4.5. Circular dichroism (CD) spectroscopy 128 4.6. Dynamic light scattering (DLS) analysis 130 6. Conclusions 149 References 153 Biographical Data 192

    References
    1. A. G. Asuero, T. Michałowski, Comprehensive formulation of titration curves for complex acid-base systems and its analytical implications, Crit. Rev. Anal. Chem., 2011, 41, 151-187.
    2. J. Reijenga, A. van Hoof, A. van Loon, B. Teunissen, Development of methods for the determination of pKa values, Anal. Chem. Insights., 2013, 8, 53-71.
    3. R. N. Goldberg, N. Kishore, R. M. Lennen, Thermodynamic quantities for the ionization reactions of buffers, J. Phys. Chem. Ref. Data., 2002, 31(2), 231-369.
    4. E. T. Urbansky, M. R. Schock, Understanding, deriving and computing buffer capacity, J. Chem. Educ., 2000, 77(12), 1640-1644.
    5. H. Okamoto, K. Mori, K. Ohtsuka, H. Ohuchi, H. Ishii, Theory and computer programs for calculating solution pH, buffer formula, and buffer capacity for multiple component systems at a given ionic strength and temperature, Pharm. Res., 1997, 14(3), 299-302.
    6. E. J. Ellis, J. F. Morrison, Buffers of constant ionic strength for studying pH-dependent processes, Methods Enzymol., 1982, 87, 405-26.
    7. N. E. Good, S. Izawa, Hydrogen ion buffers, Methods Enzymol., 1972, 24, 53-68.
    8. F. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith and K. Struhl, Short protocols in molecular biology, third Ed., P 836. John Wiley & Sons, New York. 1995.
    9. R. Blum, H. M. Fog, Metal buffers as standards in direct potentiometric determination of metal ion activities, J. Electroanal. Chem., 1972, 34, 485-488.
    10. A. E. Martell, Chelating agents for metal buffering and analysis in solution, Pure Appl. Chem., 1978, 50, 813-829.
    11. H. E. Mash, Y. P. Chin, Complexation of copper by zwitterionic aminosulfonic (Good) buffers, Anal. Chem., 2003, 75, 671-677.
    12. Z. M. Anwar, H. A. Azab, Ternary complexes formed by trivalent lanthanide ions, Nucleotides, and biological buffers, J. Chem. Eng. Data, 2001, 46, 613-618.
    13. M. Taha, M. M. Khalil, Mixed-ligand complex formation equilibria of cobalt (II), nickel (II), and copper(II) with N, N-bis(2-hydroxyethyl) glycine (Bicine) and some amino acids, J. Chem. Eng. Data, 2005, 50, 882-887.
    14. M. Sokolowska, W. Bal, Cu(II) complexation by “non-coordinating” N-2 hydroxyethylpiperzine-N’-2-ehanesulfonic acid (HEPEC buffer), J. Inorg. Biochem., 2005, 99, 1653-1660.
    15. H. A. Azab, Z. A. Anwar, M. Sokar, Metal ion complex containing nucleobases and some zwitterionic buffers, J. Chem. Eng., Data, 2004, 49, 62-72.
    16. M. M. A. Mohmed, E. M. Abd-Alla, A. E. El-Badway, Dimethyltin(IV) complexes with zwitterionic buffers (MES and MOPS), J. Organomet. Chem., 2007, 692, 1735-1747.
    17. C. Montigny, P. Champei, Use of metallochromic dyes and potentiometric pH-meter titration to detect binding of divalent cations to “Good’s” buffers: 4-Morpholinepropanesulfonic acid (MOPS) does not bind Mg2+, Anal. Biochem., 2007, 366, 96-98.
    18. M. Taha, R. A. Saqr, A. T. Ahmed, Thermodynamic studies on complexation of divalent transition metal ions with some zwitterionic buffers for biochemical and physiological research, J. Chem. Thermodyn., 2007, 39, 304-308.
    19. R. N. Goldberg, N. Kishore, R. M. Lennen, Thermodynamic quantities for the ionization reaction of buffers, J. Phys. Chem. Ref. Data, 2002, 31, 231-370.
    20. R. N. Roy, L. N. Roy, A. N. Simon, A. C. Moore, L. A. Seing, S. J. Richards, H. D. Craig, B. A. Childers, B. J. Tabor, C. A. Himes, K. E. Vielel, Thermodynamic of the second dissociation constant of N-tris [Hydroxymethyl]-4-aminobutanesulfonic acid (TABS) from 5 to 55 ℃, J. Solution chem., 2004, 33, 353-364.
    21. R. N. Roy, L. N. Roy, B. J. Tabor , C. A. Himes, S. J. Richards, A. N. Simon, A. C. Moore, L. A. Seing, H. D. Craig, K. T. Robinson, Buffers standards for the physiological Ph of zwitterionic compounds, MOBS and TABS from 5 to 55℃, J. Solution Chem., 2004, 33, 1199-1211.
    22. R. N. Roy, L. N. Roy, S. R. LeNoue, C. E. Denton, A. N. Simon, S. J. Richards, A. C. Moore, C. N. Roy, R. R. Redmond, P. A. Bryant, Thermodynamic constants of N- [tris (hydroxymethyl)methyl-3-amino] propane sulfonic acid (TAPS) from the temperatures 278. 15 K to 328.15 K, J. Chem. Thermodyn., 2006, 38, 413-417.
    23. L. N. Roy, R. N. Roy, S. R. LeNoue, C. A. Himes, S. J. Richards, A. N. Simon, C. N. Roy, V. S. Somall, Buffer standards for the physiological Ph of the zwitterionic compound, TAPS, from 5 to 55 ℃, J. Solution Chem., 2006, 35, 605-624.
    24. L. N. Roy, R. N. Roy, C. E. Denton, S. R. LeNoue, C. N. Roy, S. Ashkenazi, T. B. Williams, D. R. Church, M. S. Fuge, K. N. Sreepada, Second dissociation constant of bis-[(2-hydroxyethyl) amino] acetic acid (BICINE) and Ph of its buffer solution from 5 to 55 ℃, J. Solution, Chem., 2006, 35, 605-624
    25. R. N. Roy, L. N. Roy, C. N. Ashkenazi, J. T. Wollen, C. D. Duneth, M. S. Fuge, J. L. Durden, C. N. Roy, H. M. Huges, B. T. Morris, K. L. Cline, Buffer Standards for Ph measurement of N-(2-hydroxyethyl) piperazine-N’-2-ethanesufonic acid (HEPES) for I= 0.16 mol.Kg-1 from 5 to 55 ℃, J. Solution Chem., 2009, 38, 449-458.
    26. L. N. Roy, R. N. Roy, C. E. Denton, S. R. LeNoue, C. N. Roy, S. Ashkenazi, M. S. Fuge, J. T. Wollen, J. M. Stenner, K. A. Allen, M. A. Harmon, Buffer standards for the biochemical pH of 3-(N-morpholino)-2-hydroxypropanesulphonic acid from (278.15 to 328. 15) K, J. Chem. Eng. Data, 2009, 54, 1860-1864.
    27. L. N. Roy, R. N. Roy, C. E. Denton, S. R. LeNoue, M. S. Fuge, C. D. Dunseth, J. L. Durden, C. N. Roy, A. Bwashi, J. T. Wollen, S. J. DeArmon, Buffer standards for the physiological pH of 3-[(1,1-dimethyl-2-hydroxymethyl) amino]-2-hydroxypropanesulphonic acid from (278.15 to 328.15) K, J. Chem. Eng. Data, 2009, 54, 428-435.
    28. K. K. Kundu, A. L. De, M. N. Das, Studies in some ‘sodielectric’ media. Part. IV. Solvent effect on the proton transfer equilibria of some acids in methanol propelene glycol at 25 ℃, J. Chem. Soc. Dalton., 1972, 1, 386-391.
    29. K. K. Kundu, A. L. De, M. N. Das, Solvent effect on the dissociation of protonated tris(hydroxymethyl)-methylamine and p-nitroanilinium ion in water-ethylene glycol media at 25℃, J. Chem. Soc. Perkin II, 1972, 2, 2063-2069.
    30. R. G. Bate, J. S. Falcone Jr, A. Y. W. Ho, Transfer energies and solute-solvent effects in the dissociation of protonated “TRIS” in N-methylpropionamide- water solvents, Anal. Chem. 1974, 46, 2004-2008.
    31. K. Bose, K. K. Kundu, Proton-tyransfer equilibria in isodielectric acetonitrile ethylenr glycol mixtures at 298.15 K, J. Chem. Soc. Perkin II, 1979, 2, 1208, 1213.
    32. R. N. Roy, J. J. Gibbons, C. Krueger, G. lacross, Second dissociation of N, N-bis(2-hydroxyethyl)-2-aminopethanesulfonic acid (BES) in water and in 50 mass percent methanol+water from 278.15 to 328.15 K, J. Chem. Thermodyn., 1977, 9, 325-332.
    33. M. J. Taylor, Assignment of standard Ph values (ph*(S)) to buffers in 20 and 30 % (w/w) dimethyl sulfoxide/water mixtures at normal and subzero temperatures, J. Chem. Eng. Data, 1979, 24, 230-233.
    34. R. N. Roy, J. J. Gibbons, K. Buechter, S. Faszholz, Second-stage dissociation of N, N-bis (2-hydroxy ethyl)-2-aminoethanesulfonic acid (BES) in water +10, + 30, and + 50 Mass percent tetrahydrofuran from 278.15 to 328.15 K, J. Chem. Thermodyn., 1982, 14, 1011-1018.
    35. A. Hassan, H. A. Azab, S. A. El Gyara, Z. A Khafagy, Medium effect on the second-stage dissociation constant of N-(2-acetamido) iminodiacetic, acid (H2ADA), Can. J. Chem., 1972, 70, 1684-1687.
    36. H. A. Azab, Potentiometric determination of the second-stage dissociation constants of some hydrogen ion buffer for biological research in various water+organic solvent mixtures, J. Chem. Eng. Data, 1993, 38, 453-457.
    37. H. A. Azab, A. Hassan, Z. A. Khafagy, Potentiometric determination of the second-stage dissociation constants of N, N- bis (2-hydroxy ethyl)-2-aminoethanesulfonic acid in various water+organic solvent mixtures, J. Chem. Eng. Data, 1993, 38, 231-233.
    38. H. A. Azab, Z. A. Khafagy, A. Hassan, A. M. El-Nady, Medium effect on the second-stage dissociation constant of N, N-bis(2-hydroxyethyl) glycine, J. Chem. Eng. Data, 1994, 39, 599-601.
    39. A. S. Orabi, H. A. Azab, Potentiometric determination of the apparent dissociation constant of 3-(cyclohexylamino)-1-propanesulphonic acid and 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid in various hydro organic media, J. Chem. Eng. Data, 1997, 42, 1219-1223.
    40. H. A. Azab, A. S. Orabi, E. T. Abd El-Salam, Apparent second-stage dissociation constant of some zwitterionic buffers for biochemical and physiological research in various hydroorganic media, J. Chem. Eng. Data, 1998, 43, 703-707.
    41. H. A. Azab, F. S. Deghaidy, A. S. Orabi, N. Y. Farid, Potentiometric determination of the apparent dissociation constants of some N-substituted 3-amino2-hydroxypropane sulfonic acids in various hydro organic media, J. Chem. Eng. Data, 1998, 43, 245-248.
    42. B. N. Bulos, F. H. Jumean, Calorimetric determination of enthalpies for the proton ioniozation of N, N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid (BES) and N-bris[hydroxymethyl]methyl-2-aminoethane sulfonic acid (TES) in water-methanol mixtures, Thermochim. Acta, 2004, 411, 91-94.
    43. M. Taha, Thermodynamic study of the second-stage dissociation of N, N-bis(2-hydroxyethyl) glycine (BICINE) in water at different ionic strength and different solvent mixture, Ann. Chim. (Rome), 2004, 94, 971-978.
    44. M. Taha, Buffers for the pH range: Acidic dissociation constants of zwitterionic compounds in various hydroorganic media, Ann. Chim. (Rome), 2005, 95, 105-109.
    45. M. Taha, A. Eid. Fazary, Thermodynamics of the second-stage dissociation of 2-[N-(2-tydroxyethyl)-N-methylaminomethyl]-prpenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures, J. Chem. Thermodyn., 2005, 37, 43-18.
    46. F. H. Jumean, N. M. Abdo, Calorimetric determination of enthalpy changes for the proton ionization of glycine, N, N-Bis(2-hydroxyethyl)glycine (“bicine”) and N- Tris(hydroxymethyl)methylglycine (“Tricine”) in water-Methanol mixture, Thermochim. Acta, 2006, 448, 44-46.
    47. F. H. Jumean, N. M. Abdo, alorimetric determination of enthalpy changes for the proton ionization of N-(2-Hydroxyethyl) piperazine-N’-2-ethanesufonic acid (HEPES) and N-(2-Hydroxyethyl) piperazine-N’- [2-hydroxypropanesulfonic acid] (HEPESO) in water-methanol mixture, Thermochim. Acta, 2006, 447, 112-114
    48. F. H. Jumean, N. M. Abdo, alorimetric determination of enthalpy changes for the proton ionization of N-Tris(hydroxymethyl)methyl-4-aminobutane sulfonic acid (TABS), N-Tris(hydroxymethyl)methyl-3-aminopropane sulfonic acid (TAPS) and 3-[N-Tris(hydroxymethyl)methylamino]-2-hydroxypropane sulfonic acid (TAPSO) in water-methanol mixtures, Thermochim. Acta ,2008, 475, 22-24.
    49. P. Schindler, R. A. Robinson, R. G. Bates, Solubility of Tris (hydroxymethyl) aminoethane in water-methanol solvent mixture and medium effects in dissociation of protonated base, J. Res. Natl. bur. Std., 1968, 72A, 141-148.
    50. A. A. El-Harakany, A. O. Barakat, Solubility of tris (hydroxymethyl) aminomethane inb water-2-methoxyethanol solvent mixtures and the solvent effect on the dissociation of the protonated base, J. Solution Chem., 1985, 14, 263-269.
    51. M. J. Lee, Y. K. Chang, H. M. Lin, Separation of 4-morpholinepropanesulfonic acid from its aqueous solution, Ind. Eng. Chem. Res., 1997, 36, 5399-5402.
    52. N. C. Stellwagen, C. Gelfi, P.G. Righetti, The use of gel and capillary electrophoresis to investigate some of the fundamental physical properties of DNA, Electrophoresis, 2002, 23, 167-175.
    53. N. C. Stellwagen, C. Gelfi, P. G. Righetti, The free solution mobility of DNA, Biopolymers, 1997, 42, 687-703.
    54. N. C. Stellwagen, A. Bossi, C. Gelfi, P. G. Righetti, DNA and buffers: Are there any 7 noninteracting, neutral pH buffers, Anal. Biochem., 200, 287, 167-175.
    55. E. Stellwagen, N. C. Stellwagen, The free solution mobility of DNA in tris-acetate-EDTA buffers of different concentyrations, with and without added NaCl, Electrophoresis, 2002, 23, 1935-1941.
    56. N. C. Stellwagen, C. Gelfi, P. G. Righetti, DNA-histidine complexformation in nisoelectric histidine buffers, J. Chromatogr, A 1999, 838, 179-189.
    57. J. R. Wenner, V. A. Bloomfield, Buffer effects on EcoRV kinetics as measured by fluorescent staining and digital imaging of plasmid cleavage, Anal. Biochem, 1999, 268, 201-212.
    58. M. Sun, J. Chen, X. H. Liua, Y. F. Zhao, Molecular interaction modeling of ser-his dipeptide and buffers, J. Mol. Struct, 2004, 668, 47-49.
    59. N. E. Good, G. D. winget, W. Winter, T. N. Connollly, S. Izawa, R. M. M. Singh, Hydrogen ion buffers for biological research, Biochemistry, 1966, 5, 467-477.
    60. C. N. Pace, J. M. Scholtz, Protein structure: A practical approach, 1997, 2, 299-321.
    61. L. Stryer, Biochemistry, W. H. Freeman and Company, New York, 1988.
    62. J. M. Berg, J. L. Tymoczko, L. Stryer, New York: W.H. freeman: 2002 Biochemistry 5th Ed.
    63. T. E. Creighton, Protein Folding, W. H. Freeman and Company, New York, 1992.
    64. S. Doonan, Royal Society of Chemistry, Cambridge, U.K., 2002.
    65. C. Branden, J. Tooze, Introduction to protein structure, Garland Publishing, New York, 1999.
    66. A. Cooper, Biophysical Chemistry, RSC Publishing, 2nd Ed. Cambridge, U.K, 2011.
    67. J. M. Thornton, C. A. Orengo, A. E. Todd, F. M. Pearl, Protein folds, functions and evolution, J. Mol. Biol., 1999, 2, 333–342.
    68. B. Nölting, Protein folding kinetics, Springer Publications, Heildelberg, 1999.
    69. C. M. Dobson, Principles of protein folding, misfolding and aggregation, Semin. Cell Dev. Biol., 2004, 15, 3–16.
    70. A. M. Lesk, Introduction to protein science, Oxford University Press, New York, 2010.
    71. H. Lodish, A. Berk, L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell biology, W.H. Freeman and Company, New York, fourth Ed. 2000.
    72. A. R. Fersht, Enzyme structure and mechanism, Freeman and Company, New York, 2nd Ed., 1985.
    73. K. A. Dill, Dominant forces in protein folding, Biochemistry., 1990, 29, 7133–7155.
    74. O. Kirk, T. V. Borchert, C. C. Fuglsang, Industrial enzyme applictions, Curr. Opin. Biotechnol., 2002, 13, 345–351.
    75. P. Attri, P. Venkatesu, A. Kumar, Water and a protic ionic liquid acted as refolding additives for chemically denatured enzymes, Org. Biomol. Chem., 2012, 10, 7475–7478.
    76. S. Ortiz-Costa, M. M. Sorenson, M. Sola-Penna, Counteracting effects of urea and methylamines in function and structure of skeletal muscle myosine, Arch. Biochem. Biophys., 2002, 408, 272–278.
    77. S. P. M. Ventura, L. D. F. Santos, J. A. Saraiva, J. A. P. Coutinho, Ionic liquids microemulsions: the key to candida Antarctica lipase B superactivity, Green Chem., 2012, 14, 1620–1625.
    78. P. Attri, P. Venkatesu, M. J. Lee, Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin, J. Phys. Chem. B., 2010, 114, 1471–1478.
    79. D. Shukla, C. P. Schneider, B. L. Trout, Complex interactions between molecular ions in solution and their effect on protein stability, J. Am. Chem. Soc., 2011, 133, 18713–18718.
    80. C. Branden, J. Tooze, Introduction to Protein Structure; 2nd Ed., Garland
    Publishing Inc: New York, 1999.
    81. A. R. Fersht, From the first protein structure to our current knowledge of protein folding: delights and scepticisms, Nat. Rev. Mol. Cell Biol., 2008, 9, 650-654.
    82. C. M. Dobson, Protein folding and misfolding, Nature, 2003, 426, 884-890.
    83. C. B. Anfinsen, Principles that govern the folding of protein chains, Science, 1973, 181, 223-230.
    84. H. Neurath, J. P. Greenstein, F. W. Putnam, J. O. Erickson, The chemistry of protein denaturation, J. A. Chem. Rev., 1944, 34, 157-265.
    85. V. Pande, A. Grosberg, T. Tanaka, Heteropolymer freezing and design: Towards physical models of protein folding, Rev. Mod. Phys., 2000, 72, 259-286.
    86. K. A. Dill, D. Shortle, Denatured states of proteins, Annu. Rev. Biochem., 1991, 60, 795-825.
    87. C. R. Cantor, P. R. Schimmel, Biophyscial chemistry, part 1, conformation of biological macromolecules; Replica Press Ltd, India, 2008.
    88. P. Venkatesu, M. J. Lee, H. M. Lin, Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state, Arch Biochem Biophys., 2007, 466, 106–115.
    89. E. V. Kuzmenkina, C. D. Heyes, G. N. Nienhaus, Single molecule forster resonance energy transfer study of protein dynamics under denaturing conditions, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 15471-15476.
    90. J. N. Onuchic, Z. Luthey-Schulten, P. G. Wolynes, Theory of protein folding: the energy landscape perspective, Annu. Rev. Phys. Chem., 1997, 48, 545–600.
    91. G. I. Makhatadze, P. L. Privalov, Energetics of protein structure, Adv. Protein Chem., 1995, 47, 307–425.
    92. C. J. Tanford, Contribution of hydrophobic interaction to the stability of the globular information of proteins, Am. Chem. Soc., 1962, 84, 4240-4247.
    93. J. S. Fruton, Molecules and life; John Wiley and Sons: New York, 1977.
    94. C. Tanford, The hydrophobic effect, 2nd Ed., Wiley, New York, 1980.
    95. D. Hall, A. P. Minton, Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges, Biochem. Biophys. Acta, 2003, 1649, 127-139.
    96. S. Ohnishi, K. Takano, Amyloid fibrils from the viewpoint of protein folding, Cell. Mol. Life Sci., 2004, 61, 511–524.
    97. M. Auton, D. W. Bolen, Predicting the energetics of osmolyte-induced protein folding, Proc. Natl. Acad. Sci., USA 2005, 102, 15065-15068.
    98. P. H. Yancey, G. N. Somero, Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes, Biochem. J, 1979, 183, 317–323.
    99. P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus, G. N. Somero, Living with water stress: evolution of osmolyte systems, Science, 1982, 217, 1214–1222.
    100. S. Ortiz-Costa, M. M. Sorenson, M. Sola-Penna, Betaine protects urea-induced denaturation of myosin subfragment-1, FEBS J., 2008, 275, 3388–3396.
    101. G. A. Spitz, C. M. Furtado, M. Sola-Penna, P. Zancan, Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure activity, Biochem. Pharmacol., 2009, 77, 46–53.
    102. A. Kumar, A. Rani, P. Venkatesu, A comparative study of the effects of the hofmeister series anions of the ionic salts and ionic liquids on the stability of α- chymotrypsin, New J. Chem., 2015, 39, 938.
    103. S. N. Timasheff, Control of protein stability and reaction by weakly interacting cosolvents: The simplicity of the complicated, Adv. Protein Chem., 1998, 51, 355-432.
    104. S. N. Timasheff, Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 9721-9726.
    105. B. S. Gupta, M. Taha, M. J. Lee, Superactivity of α-chymotrypsin with biological buffers, TRIS, TES, TAPS, and TAPSO in aqueous solutions, RSC Adv. 4 (2014) 51111-51116.
    106. V. Levitsky, P. Lozano, J. L. Iborra, Glycosylated α-chymotrypsin as a catalyst for kyotorphin synthesis in water-organic media, Biotechnol. Lett. 1999, 21, 595-599.
    107. T. Thiela, L. Liczkowskib, S. T. Bissena, New zwitterionic butanesulfonic acids that extend the alkaline range of four families of good buffers: evalouation for use in biological systems, J. Biochem. Biophys. Methods., 1998, 37, 117–129.
    108. M. A. Metrick, J. E. Temple, G. M. Donald, The effect of buffers and pH on the thermal stability, unfolding and substrate binding of RecA, Biophys. Chem., 2013, 184, 29-36.
    109. N. A. Kim, I. B. An, D. G. Lim, J. Y. Lim, S. Y. Lee, W. S. Shim, N. G. Kang, S. H. Jeong, Effects of pH and buffer concentration on the thermal stability of etanercept using DSC and DLS, Bio. Pharm. Bull., 2014, 37, 808-816.
    110. L. Sathish, S. Millan, S. Das, S. Jena, H. Sahoo, Thermal aggregation of bovine serum albumin in conventional buffers: An insight into molecular level interactions, J Solution Chem., 46, 2017, 831-848.
    111. L. Haifeng, L. Yuwen, C. Xioomin, W. Zhiyong, W. Cunxin, Effects of sodium phosphate buffer on horseradish peroxidase thermal stability, J. Therm. Anal. Calorim., 2 (2008) 569-574.
    112. T. J. Zbacnik, R. E. Holcomb, D. S. Katayama, B. M. Murphy, R. W. Payne, R. C. Coccaro, G. J. Evans, J. E. Matsuura, C. S. Henry, M. C. Manning, Role of buffers in protein formulations, J. Pharm. Sci., 2017, 106, 713-733.
    113. S. O. Ugwu, S. P. Apte, The effects of buffers on protein conformational stability, Pharm. Technol., 2004, 28, 86-113.
    114. W. A. Lubas, R. G. Spiro, Evaluation of the role of rat liver golgi endo-alpha-D-mannosidage in processing N-linked oligosaccharides, J. Biol. Chem., 1988, 263, 3990-3998.
    115. D. Kameoka, E. Masuzaki, T. Ueda, T. Imoto, Effect of buffer species on the unfolding and the aggregation of humanized IgG, J. Biochem., 2007,142, 383-391.
    116. B. S. Gupta, M. Taha, M. J. Lee, The interaction of bovine serum albumin with biological buffers, TES, TAPS, and TAPSO in aqueous solutions, Process Biochem., 2013, 48 1686-1696.
    117. B. S. Gupta, M. Taha, M. J. Lee, Buffer more than buffering agent: introducing a new class of stabilizers for protein BSA, Phys. Chem. Chem. Phys., 2015, 17, 1114-1133.
    118. M. Taha, M. J. Lee, Interaction of TRIS [tris (hydroxymethyl) aminomethane] and related buffers with peptide backbone: Thermodyanamic characterization, Phys. Chem. Chem. Phys., 2010, 12, 12840–12850.
    119. S. Asad, S. F. Torabi, M. F. Roudsari, N. Ghaemi, K. Khajeh, Phosphate buffer effects on thermal stability and H2O2- resistance of horseradish peroxidase, Int. J. Biol. Macromol., 2011, 48, 566-570.
    120. T. J. Zbacnik, R. E. Holcomb, D. S. Katayama, B. M. Murphy, R. W. Payne, R. C. Coccaro, G. J. Evans, J. E. Matsuura, C. S. Henry, M. C. Manning, Role of buffers in protein formulations, J. Pharm. Sci., 2017, 106, 713-733.
    121. L. Haifeng, L. Yuwen, C. Xioomin, W. Zhiyong, W. Cunxin, Effects of sodium phosphate buffer on horseradish peroxidase thermal stability, J. Therm. Anal. Calorim., 2008, 2, 569-574.
    122. A. L. De Roos, P. Walstra, T. J. Geurts, The association of lysozyme with casein, Int. Dairy J., 8 (1998) 319-324.
    123. P. M. Davidson, in M. P. Doyle (Ed.), Food microbiology, chemical preservatives and natural antimicrobial compounds, ASM Press, Washington, DC, United States, 2001, p. 601.
    124. C. Delfini, M. Cersosimo, V. Del Prete, M. Strano, G. Gaetano, A. Pagliara, S. Ambro, Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts, J. Agric. Food Chem., 2004, 52, 1861-1866.
    125. L. Callewaert, C. W. Michiels, Lysozyme in the animal kingdom, J. Biosci., 2010, 35, 127-160.
    126. D. Barreca, G. Lagana, S. Magazu, F. Migliardo, G. Gattuso, E. Bellocco, FTIR, ESI-MS, VT-NMR and SANS study of trehalose thermal stabilization of lysozyme, Int. J. Biol. Macromol., 2014, 63, 225-232.
    127. M. F. Perutz, M. G. Rossmann, A. F. Cullis, H. Muirhead, G. Will, A. C. T. North, Structure of haemoglobin a three dimensional Fourier synthesis at 5.5 Å resolution obtained by X-ray analysis, Nature., 1960, 185, 416−432.
    128. M. F. Perutz, Stereochemistry of cooperative effects in haemoglobin, Nature., 1970, 228, 726−734.
    129. M. F. Perutz, Haemoglobin structure and respiratory transport, Sci. Am., 1978, 239, 92−125.
    130. R. E. Hirsch, R. S. Zukin, R. L. Nagel, Intrinsic fluorescence emission of intact oxy haemoglobins, Biochem. Biophys. Res. Commun., 1980, 93, 432−439.
    131. S. Venkateshrao, P. T. Manoharan, Conformational changes monitored by fluorescence study on reconstituted hemoglobins, Spectrochim. Acta Part A., 2004, 60, 2523−2526.
    132. T. Lu, K. Panneerselvam, Y. Liaw, P. Kan, C. Lee, Structure determination of porcine haemoglobin, Acta Crystallogr. Sect. D: Biol. Crystallogr., 2000, 56, 304−312.
    133. V. Y. Levitsky, A. A. Panova, V. V. Mozhaev, Correlation of high-temperature stability of α-chymotrysin with salting-in properties of solution, Eur. J. Biochem., 1994, 219, 231–236.
    134. A. Rani, P. Venkatesu, Insights into the interaction between enzyme and co-solvents: stability and activity of stem bromelain, Int. J. of Biol. Macromol., 2015, 73, 189–201.
    135. A. Ritonja, A. D. Rowan, D. J. Buttle, N. D. Rawlings, V. Turk, A. J. Barrett, Stem bromelain: Amino acid sequence and implications for weak binding of cystatin, FEBS Lett., 1989, 247, 419–424.
    136. I. G. Kamphuis, J. Drenth, E. N. Baker, Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain, J. Mol. Biol., 1985, 182, 317–329.
    137. H. R. Maurer, Bromelain: biochemistry, pharmacology and medical use, Cell. Mol. Life Sci., 2001, 58, 1234–1245.
    138. R. H. Khan, S. Rasheedi, S. K. Haq, Effect of pH, temperature and alcohols on the stability of glycosylated and deglycosylated stem bromelain, J. Biosci., 2003, 28, 709–714.
    139. A. A. Reyna, A. H. Arana, Low versus high molecular weight poly (ethylene glycol)-induced states of stem bromelain at low pH: Stabilization of molten globule and unfolded states, Biochim. Biophys. Acta, 1995, 1248, 123–128.
    140. A. A. Reyna, A. H. Arana, R. A. Espinosa, Hydrophobic interactions are prevalent force in bromelain: Fab’ complex, Biochem. J., 1994, 300, 107–110.
    141. I. Petitpas, T. Grune, A. A. Bhattacharya, S. Curry, Crystal structure of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids, J. Mol. Biol., 2001, 314, 955-960.
    142. J. Liu, Y. Yue, J. Wang, X. Yan, R. Liu, Y. Sun, X. Li, Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescence spectroscopy
    and computational approach, Spectrochim. Acta. Part A., 2015, 145, 473–481.
    143. D. C. Carter, J. X. Ho, Structure of serum albumin, Adv. Protein Chem. Struct. Biol., 1994, 45, 153–203.
    144. T. Peters, Serum albumin, Adv. Protein Chem., 1985, 37, 161–245.
    145. L. H. Lucas, K. E. Price, C. K. Larive, Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion measurements, J. Am. Chem. Soc., 2004, 126, 14258–14266.
    146. P. L. Gentili, F. Ortica, G. Favaro, Static and dynamic interaction of a naturally occurring photochromic molecule with bovine serum albumin studied by UV−Visible absorption and fluorescence spectroscopy, J. Phys. Chem. B., 2008, 112, 16793–16801.
    147. X. M. He, D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature., 1992, 358, 209–215.
    148. F. Schmid, Encyclopedia of life sciences., 2001, 1-4.
    149. S. B. Brown, An introduction to spectroscopy for biochemists, Academic Press, London, 1980.
    150. L. Brand, M. L. Johnson, Fluorescence spectroscopy, Academic Press, San Diego, 1997.
    151. J. R. Lakowicz, Principles of fluorescence spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999.
    152. J. C. Lindon, G. E. Tranter and D. W. Koppenaal, Encyclopedia of Spectroscopy and Spectrometry, Academic Press, 2000.
    153. G. D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules, Plenum Press, New York, 1996.
    154. S. M. Kelly, T. J. Jess, N. C. Price, How to study proteins by circular dichroism, Biochem. Biophys. Acta, 2005, 1751, 119-139.
    155. J. C. Kendrew, R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, D. C. Phillips, Nature, 1960, 185, 422.
    156. H. Jans, X. Liu, L. Austin, G. Maes, Q. Huo, Dynamic light scattering as a powerful tool for gold nanoparticle bio conjugation and biomolecular binding studies, Anal. Chem., 2009, 81 (22), 9425−9432.
    157. M. Bisht, A. Kumar, P. Venkatesu, Analysis of the driving force that rules the stability of lysozyme in alkylammonium-based ionic liquids, Int. J. Biol. Macromol., 2015, 81, 1074-1081.
    158. E. P. Meloab, M. R. Aires-Barros, S. M. B. Costa, J. M. S. Cabral, Thermal unfolding of proteins at high pH range studied by UV absorbance, J. Biochem. Biophys. Methods, 1997, 34, 45-59.
    159. A. N. Glazer, E. L. Smith, Studies on the ultraviolet difference spectra of proteins polypeptides, J. Biol. Chem., 1961, 236, 2942-2947.
    160. M. Bisht, I. Jha, P. Venkatesu, Comprehensive evaluation of biomolecular interactions between protein and amino acid based-ionic liquids: A comparable study between [Bmim] [Br] and [Bmim] [Gly] ionic liquids, Chemistry Select., 2016, 1, 3510-3519.
    161. S. Segawa, M. Sugihara, Characterization of the transition state of lysozyme unfolding. II. Effects of the interchain crosslinking and the inhibitor binding on the transition state, Biopolymers, 1984, 23, 2489-2498.
    162. A. N. Glazer, E. L. Smith, Effect of denaturation on the ultraviolet absorption spectra of proteins, J. Biol. Chem., 1960, 235, PC43-PC44.
    163. J. R. Lakowicz, Principles of fluorescence spectroscopy, Kluwer Academic/Plenum publishers, New York, 1999.
    164. M. Bekhouche, L. J. Blum, B. Doumèche, Contribution of dynamic and static quenchers for the study of protein conformation in ionic liquids by steady-state fluorescence spectroscopy, J. Phys. Chem. B., 2012, 116, 413-423.
    165. B. Sandhya, A. H. Hegde, S. S. Kalanur, U. Katrahalli, J. Seetharamappa, Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes, J. Pharm. Biomed. Anal., 2011, 54, 1180 -1186.
    166. A. Rani, P. Venkatesu, Unanticipated behavior of sorbitol towards the stability and activity of stem bromelain: an outlook through biophysical techniques, Process Biochem., 2016, 51, 1028-1039.
    167. I. Jha, M. Bisht, P. Venkatesu, Does 1-allyl-3-methylimidazolium chloride act as a biocompatible solvent for stem bromelain?, J. Phys. Chem. B., 2016, 120, 5625-5633.
    168. L. Brand, D. Toptygin, Spectrally and time-resolved fluorescence emission of indole during solvent relaxation: a quantitative model, Chem. Phys. Lett., 2000, 322, 492-502.
    169. W. W. Wright, G. T. Guffanti, J. M. Vanderkooi, Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan, Biophys. J., 2003, 85, 1980-1995.
    170. P. K. Kumar, I. Jha, P. Venkatesu, I. Bahadur, E. E. Ebenso, A comparative study on the stability of bromelain based on the variation of anions of imidazolium-based ionic liquids, J. Mol. Liq., 2017, 246, 178-186.
    171. T. O. Street, D. W. Bolen, G. D. Rose, A molecular mechanism for osmolyte-induce protein stability, Proc. Natl. Acad. Sci. U.S.A., 2016, 103, 1397-4002.
    172. P. Venkatesu, M. J. Lee, H. M. Lin, Osmolyte counteracts urea-induced denaturation of alpha-chymotrypsin, J. Phys. Chem. B., 2009, 113, 5327-5338.
    173. A. Rani, P. Venkatesu, A distinct proof of interplay between trehalose and guanidinium chloride for the stability of stem bromelain, J. Phys. Chem. B., 2016, 120, 8863-8872.
    174. A. Barth, Infrared spectroscopy of proteins, Biochim. Biophys. Acta, Bioenerg., 2007, 1767, 1073-1101.
    175. V. Raussens, J. M. Ruysschaert, E. Goormaghtigh, Fourier transform infrared spectroscopy study of the secondary structure of the gastric H+, K+-ATPase and of its membrane-associated proteolytic peptide, J. Biol. Chem., 1997, 272, 262 -270.
    176. S. Matheus, W. Friess, H. C. Mahler, A critical evaluation of Tm (FTIR) measurements of high-concentration IgG1 antibody formulations as a formulation development tool, Pharm. Res. 2006, 23(7), 1617-1627.
    177. E. S. Manas, Z. Getahun, W. W. Wright, W. F. DeGrado, J. M. Vanderkooi, Infrared spectra of amide groups in α-helical proteins: evidence for hydrogen bonding between helices and water, J. Am. Chem. Soc., 2000, 122(41), 9883-9890.
    178. S. K. Haq, R. H. Khan, Spectroscopic analysis of thermal denaturation of Cajanus cajan proteinase inhibitor at neutral and acidic pH by circular dichroism, Int. J. Biol. Macromol., 2005, 35, 111-116.
    179. S. Y. Venyaminov, J. T. Yang, G. D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules, Plenum, New York., 1996, pp.69-104.
    180. S. M. Kelly, T. J. Jess, N. C. Price, How to study proteins by circular dichroism, Biochim. Biophys. Acta, Proteins Proteomics, 2005, 1751, 119-139.
    181. I. Jha, A. Rani, P. Venkatesu, Sustained stability and activity of lysozyme in choline chloride against pH induced denaturation, ACS Sustain. Chem. Eng., 2017, 5, 8344-8355.
    182. P. Haezebrouck, M. Joniau, H. V. Dael, S. D. Hooke, N. D. Woodruff, C. M. Dobson, An equilibrium partially folded state of human lysozyme at low pH, J. Mol. Biol., 1995, 246, 382-387.
    183. S. M. Kelly, N. C. Price, The application of circular dichroism to studies of protein folding and unfolding, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1997, 1338, 161-185.
    184. G. D. Phillies, Quasielastic light scattering, Anal. Chem., 1990, 62, 1049-1057.
    185. N. C. Santos, M. A. Castanho, Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus, Biophys. J., 1996, 71, 1641-1650.
    186. D. Lochmann, J. Weyermann, C. Georgens, R. Prassl, A. Zimmer, Albumin-protamine-oligonucleotide nanoparticles as a new antisense delivery system. Part 1: physicochemical characterization, Eur. J. Pharm. Biopharm., 2005, 59, 419-429.
    187. A. Rani, M. Taha, P. Venkatesu, and M. J. Lee, Coherent experimental and simulation approach to explore the underlying mechanism of denaturation of stem bromelain in osmolytes, J. Phys. Chem. B., 2017, 121, 6456-6470.
    188. R. E. Dickerson and I. Geis, The structure and action of proteins, Harper & Row Publishers, New York, 1969.
    189. T. E. Creighton, Proteins-structures and molecular properties, W. H. Freeman and Company, New York, 2nd Ed, 1993.
    190. G. D. Rose, P. J. Fleming, J. R. Banavar, A. Maritan, A backbone-based theory of protein folding, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 16623-16633.
    191. A. Kumar, P. Venkatesu, Overview of the stability of α- chymotrypsin in different solvent media, Chem. Rev., 2012, 112, 4283 - 4307.
    192. H. Mach, D. B. Volkin, C. J. Burke, C. R. Middaugh, Protein Stability and Folding Theory and Practice, 40, Humana Press, Totowa, NJ, 1995, pp. 91–114.
    193. E. P. Melo, M. R. Aires-Barros, S. M. B. Costa, J. M. S. Cabral, Thermal unfolding of proteins at high pH range studied by UV absorbance, J. Biochem. Biophys. Methods, 1997, 34, 45–59.
    194. Y. Chen, M. D. Barkley, Towards understanding tryptophan fluorescence in proteins. Biochemistry, 1998, 37, 9976–9982.
    195. S. K. Haq, Influence of salts and alcohols on the conformation of partially folded intermediate of stem bromelain at low pH, Int. J. Biochem. Cell Biol., 2005, 37, 361–374.
    196. S. Habib, M. A Khan, H. Younus, Thermal destabilization of stem bromelain by trehalose, protein J., 26 (2), 2007, 117-124.
    197. A. Ritonja, A. D. Rowan, D. J. Buttle, N. D. Rawlings, V. Turk, A. J. Barrett, Stem bromelain: Amino acid sequence and implications for weak binding of cystatin, FEBS Lett., 1989, 247, 419–424.
    198. A. Barth, The infrared absorption of amino acid side chains, Prog. Biophys. Mol. Biol., 2000, 74, 141-173.
    199. A. Rani, A. Jayaraj, B. Jayaram, V. Pannuru, Trimethylamine-N-oxide switches from stabilizing nature: a mechanistic outlook through experimental techniques and molecular dynamics simulation, Sci. Rep., 2016, 6, 23656.
    200. J. L. R. Arrondo, F. M. Goni, Structure and dynamics of membrane proteins as studied by infrared spectroscopy, Prog. Biophy. Mol. Biol., 1999, 72, 367–405.
    201. P. I. Haris, F. Severcan, FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media, J. Mol. Catal. B: Enzym. 1999, 7, 207–221.
    202. D. M. Byler, H. Susi, Examination of secondary structure of protein by de convolved FTIR spectra, Biopolymers, 1986, 25, 469–487.
    203. A. A. Reyna, A. H. Arana, R. A. Espinosa, Circular dichroism of stem bromelain: a third spectral class within the family of cysteine proteinases, Biochem. J., 1994, 300, 107–110.
    204. A. Rani, P. Venkatesu, Insights into the interactions between enzyme and co-solvents: Stability and activity of stem bromelain, Int. J. Biol. Macromol., 2015, 73, 189–201.
    205. H. M. Zhang, Y. Q. Wang, Q. H. Zhou, G. L. Wang, Molecular interaction between phosphomolybdate acid bovine hemoglobin, J. Mol. Struct., 2009, 921, 156–162.
    206. X. Bao, Z. Zhu, N. Q. Li, J. Chen, Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin, Talanta, 2001, 54, 591–596.
    207. Q. Yang, J. Liang, H. Han, Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques, J. Phys. Chem. B., 2009, 113, 10454–10458.
    208. X. C. Zhao, R. T. Liu, Z. X. Chi, Y. Teng, P. F. Qin, New insight into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies, J. Phys. Chem. B., 2010, 114, 5625–5631.
    209. Y. Q. Wang, H. M. Zhang, G. C. Zhang, S. X. Liu, Q. H. Zhou, Z. H. Fei, Z. T. Liu, Studies of the interaction between paraquat and bovine hemoglobin, Int. J. Biol. Macromol., 2007, 41, 243–250.
    210. A. P. Yang, M. H. Ma, X. H. Li, M. Y. Xue, Interaction of irbesartan with bovine hemoglobin using spectroscopic techniques and molecular docking, Journal of Spectroscopy, 2012, 27, 119–128.
    211. B. Becher, F. Tokunaga, T. G. Ebrey, Ultraviolet and visible absorption spectra of the purple membrane protein and the photocycle intermediates, Biochem., 1978, 17, 2293-2300.
    212. H. Polet, J. Steinhardt, Binding-induced alteration in ultraviolet absorption of native serum albumin, Biochem., 1968, 7, 1348–1346.
    213. T. Wu, Q. Wu, S. Guan, H. Su, Z. Cai, Binding of the environmental pollutant naphthol to bovine serum albumin, Biomacromolecules., 2007, 8, 1899–1906.
    214. Q. H. Zhou, Y. Q. Wang, H. M. Zhang, G. C. Zhang, Z. H. Fei, Z. T. Liu, Spectroscopic studies on the Interaction between imidacloprid and bovine hemoglobin (BHb), J. Instrum. Anal., 2007, 26, 368–372.
    215. R. E. Hirstch, Hemoglobin fluorescence, Methods Mol. Med., 2003, 82, 133− 154.
    216. Y. Teng, R. Liu, S. Yan, X. Pan, P. Zhang, M. Wang, Spectroscopic investigation on the toxicologicalo interaction of 4-aminoantipyrine with bovine hemoglobin, J. Fluoresc., 20, 2010, 381–387.
    217. Y. Q. Wang, H. M. Zhang, R. H. Wang, Investigation of the interaction between colloidal TiO(2) and bovine hemoglobin using spectral methods, Colloids Surf. B, 2008, 65, 190 – 196.
    218. I. Jha, P. Attri, P. Venkatesu, Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids, Phys. Chem. Chem. Phys., 2014, 16, 5514-5526.
    219. R. A. Goldbeck, R. M. Esquerra, D. S. Kliger, Hydrogen bonding to Trp β37 is the first step in a compound path way for hemoglobin allostery, J. Am. Chem. Soc., 2002, 124, 7646-7647.
    220. B. Alpert, D. M. Jameson, G. Weber, Tryptophan emission from human hemoglobin and isolated subunits, J. Photochem. Photobiol., 1980, 31, 1-4.
    221. I. Jha, A. Kumar, P. Venkatesu, The overriding roles of concentration and hydrophobic effect on structure and stability of heme protein induced by imidazolium-based ionic liquids, J. Phys. Chem. B., 2015, 119, 8357-8368.
    222. N. B. From, B. E. Bowler, Urea denaturation of staphylococcal nuclease moni- tored by Fourier transform infrared spectroscopy, Biochem., 1998, 37, 1623−1631.
    223. J. Kong, S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin., 2007, 39, 549–559.
    224. Y. Jiang, C. Li, X. Nguyen, S. Muzammil, E. Towers, J. Gabrielson, L. Narhi, Qualification of FTIR spectroscopic method for protein secondary structural analysis, J. Pharm. Sci., 2011, 100, 4631–4641.
    225. S. Krimm, J. Bandekar, Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins, Adv. Protein. Chem., 38, (1986), 181−364.
    226. J. Bandekar, Amide modes and protein conformation, Biochim. Biophys. Acta., 1992, 1120, 123–143.
    227. J. Tang, C. Yang, L. Zhou, F. Ma, S. Liu, S. Wei, J. Zhou, Y. Zhou, Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques, Spectrochim. Acta A., 2012, 96, 461–467.
    228. D. H. Hu, H. M. Wu, J. G. Liang, H. Y. Han, Study on the interaction between CdSe quantum dots and hemoglobin, Spectrochim. Acta A., 2008, 69, 830–834.
    229. H. Cheng, H. Liu, W. Bao, G. Zou, Studies on the interaction between doceaxl and human hemoglobin by spectroscopic analysis and molecular docking, J. Photochem. Photobiol. B., 2011, 105, 126–132.
    230. G. D. Fasman (Ed.), Circular Dichroism and The Conformational Analysis of Biomolecules, Plenum Press, New York, 1996.
    231. N. Berova, K. Nakanishi, R. W. Woody (Eds.), Circular Dichroism: Principles and Applications, 2nd edR, Wiley-VCH, New York, 2000.
    232. N. Vigneshwaran, A. A. Kathe, P. V. Varadarajan, R. P. Nachane, R. H. Balasubramanya, Silver-protein (core-shell) nanoparticle production using spent mushroom substrate, Langmuir., 2007, 23, 7113–7117.
    233. V. M. Bolanos-Garcia, S. Ramos, R. Castillo, J. Xicohtencatl-Cortes, J. Mas-Oliva, Monolayers of apolipoproteins at the air/water interface, J. Phys. Chem. B, 2001, 105, 5757–5765.
    234. Z. Chi, R. Liu, B. Yang, H. Zhang, Toxic interaction between oxytetracycline and bovine hemoglobin, J. Hazard. Mater., 2010, 180, 741–747.
    235. A. Basu, G. S. Kumar, Binding of carmoisine, a food colorant, with hemoglobin: spectroscopic and calorimetric studies, Food Res. Int., 2015, 72, 54–61.
    236. F. Ding, B. Y. Han, W. Liu, L. Zhang, Y. Sun, Interaction of imidacloprid with hemoglobin by fluorescence and circular dichroism, J Fluoresc., 2010, 20, 753–762.
    237. H. Jans, X. Liu, L. Austin, G. Maes, Q. Huo, Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies, Anal. Chem., 2009, 81, 9425−9432.
    238. B. Jachimska, M. Wasilewska, Z. Adamczyk, Characterization of globular protein solutions by dynamic light scattering, electro phoretic mobility, and viscosity measurements, Langmuir., 2008, 24, 6866−6872.
    239. D. Arosio, H. Kwansa, H. Gering, G. Piszczek, E. Bucci, Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites, Biopolymers., 2002, 63, 1−11.
    240. I. Jha, P. Venkatesu, Unprecedented improvement in the stability of hemoglobin in the presence of promising green solvent 1-allyl-3-methylimidazolium chloride, ACS Sustain. Chem. Eng., 2016, 4, 413−421.
    241. J. Y. Feng, J. Z. Liu, L. N. Ji, Thermostability, solvent tolerance, catalytic activity and conformation of cofactor modified horseradish peroxidase, Biochimie, 2008, 90, 1337-1346.
    242. S. H. Jeong, Analytical methods and formulation factors to enhance protein stability in solution., Arch. Pharm. Res., 2012, 35, 1871–1886.
    243. E. Y. Chi, S. Krishna, T. W. Randolph, J. F. Capenter, Physical stability of protein in aqeous solution: mechanism and driving forces in nonnative protein aggregation, Pharm.Res., 2003, 20, 1325-1336
    244. M. C. Manning, K. Patel, R. T. Borchardt, Stability of protein pharmaceuticals, Pharm. Res., 1989, 6, 903–918.
    245. D. B. Volkin, C. R. Middaugh, Part A: Chemical and physical pathways of protein degradation. Stability of protein pharmaceuticals, (Ahern TJ, Manning MC Eds.) Plenum Press, New York, 1992, p. 215.
    246. M. Khossravi, R. T. Borchardt, Chemical pathways of peptide degradation. X: effect of metal-catalyzed oxidation on the solution structure of a histidine-containing peptide fragment of human relaxin, Pharm. Res., 2000, 17, 851–858.
    247. S. Millan, L. Satish, K. Bera, B. Susrisweta, D. V. Singh, H. Sahoo, A spectroscopic and molecular simulation approach toward the binding affinity between lysozyme and phenazinium dyes: an effect on protein conformation, J. Phys. Chem. B., 2017, 121, 1475-1484.
    248. B. K. Paul, K. Bhattacharjee, S. Bose, N. Guchhait, A spectroscopic investigation on the interaction of a magnetic ferrofluid with a model plasma protein: effect on the conformation and activity of the protein, Phys. Chem. Chem. Phys., 2012, 14, 15482-15493.
    249. J. Liu, Y. Yue, Jing Wang, X. Yan, R. Liu, Y. Sun, X. Li, Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescence spectroscopy and computational approach, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 2015, 145, 473–481.
    250. L. Yang, J. Lv, X. Wang, J. Zhang, Q. Li, T. Zhang, Z. Zhang, L. Zhang, Direct interactions in the recognition between the environmental estrogen bisphenol AF and human serum albumin, J. Mol. Recognit., 2015, 28, 459–466.
    251. S. X. Cao, Y. F. Zhao, Application of molecular absorption spectrophotometric method to the determination of biologic macromolecular structures, Spectrosc. Spect. Anal., 2004, 24, 1197–1201.
    252. P. B. Kandagal, S. Askoka, J. Seetharamappa, S. M. T. Shaikh, Y. Jadegoud, O. B. Ijare, Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach, J. Pharm. Biomed. Anal., 2006, 41, 393–399.
    253. W. S. Tao, Protein molecular basic. The People’s Education Press: Beijing, 1981, 256.
    254. S. Millan, L. Satish, S. Kesh, Y. S. Chaudhary, H. Sahoo, Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking, J. Photochem. Photobiol., B, 2016, 162, 248–257.
    255. C. Jash, G. S. Kumar, Binding of alkaloids berberine, palmatine and coralyne to lysozyme: a combined structural and thermodynamic study, RSC Adv., 2014, 4, 12514–12525.
    256. P. Qin, B. Su, R. Liu, Probing the binding of two fluoroquinolones to lysozyme: a combined spectroscopic and docking study, Mol. BioSyst., 2012, 8, 1222–1229.
    257. K. Hayashi, T. Imoto, G. Funatsu, M. Funatsu, The position of the active tryptophan residue in lysozyme, J. Biochem., 1965, 58, 227–235.
    258. E. Nishimoto, S. Yamashita, N. Yamasaki, T. Imoto, Resolution and characterization of tryptophyl fluorescence of hen egg-white lysozyme by quenching and time-resolved spectroscopy, Biosci. Biotechnol. Biochem., 1999, 63, 329–336.
    259. T. Imoto, L. S. Forster, J. A. Rupley, F. Tanaka, Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration, Proc. Natl. Acad. Sci. U. S. A., 1972, 69, 1151–1155.
    260. S. Tabassum, W. M. Al-Asbahy, M. Afzal, F. Arjmand, R. H. Khan, Interaction and photo-induced cleavage studies of a copper based chemotherapeutic drug with human serum albumin: Spectroscopic and molecular docking study, Mol. BioSyst., 2012, 8, 2424–2433.
    261. G. Zhang, Q. Que, J. Pan, J. Guo, Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy, J. Mol. Struct., 2008, 881, 132–138.
    262. F. Ge, C. Y. Chen, D. Q. Liu, B. Y. Han, X. F. Xiong, S. L. Zhao, Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy, J. Lumin., 2010, 130, 168-173.
    263. Y. J. Hu, Y. Liu, Z. B. Pia, S. S. Qu, Interaction of cromolyn sodium with human serum albumin: A fluorescence quenching study, Bioorg. Med. Chem., 2005 13, 6609-6614.
    264. B. Sengupta, P. K. Sengupta, The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study, Biochem. Biophys. Res. Commun., 2002, 299, 400-403.
    265. J. Tian, J. Liu, W. He, Z. Hu, X. Yao, X. Chen, Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modeling method, Biomacromolecules., 2004, 5 (5), 1956–1961.
    266. S. Gaudreau, J. Neault, H. Tajmir-Riahi, Interaction of AZT with human serum albumin studied by capillary electrophoresis, FTIR and CD spectroscopic methods, J. Biomol. Struct. Dyn., 2002, 19, 1007–1014.
    267. M. Yu, Z. Ding, F. Jiang, X. Ding, J. Sun, S. Chen, G. Lv, Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering, Spectrochim. Acta Part A, 2011, 83, 453–460.
    268. M. Jiang, M. X. Xie, D. Zheng, Y. Liu, X. Y. Li, X. Cheng, Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin, J. Mol. Struct., 2004, 692, 71-80.
    269. Y. Liu, M. X. Xie, J. Kang, D. Zheng, Studies on the interaction of total saponins of panaxnotoginseng and human serum albumin by Fourier transform infrared spectroscopy, Spectrochim. Acta, Part A, 2003, 59, 2747-2758.
    270. A. Belatik, S. Hotchandani, J. Bariyanga, H. A. TajmireRiahi, Binding sites of retinol and retinoic acid with serum albumins, Eur. J. Med. Chem., 2012, 48, 114-123.
    271. S. Ghosh, N. K. Pandey, S. Dasgupta, Crowded milieu prevents fibrillation of hen egg white lysozyme with retention of enzymatic activity, J. Photochem. Photobiol., B, 2014, 138, 8–16.
    272. M. D. Kirkitadze, M. M. Condron, D. B. Teplow, Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis, J. Mol. Biol., 2001, 312, 1103–1119.
    273. B. K. Paul, K. Bhattacharjee, S. Bose, N. Guchhait, A spectroscopic investigation on the interaction of a magnetic ferro fluid with a model plasma protein: effect on the conformation and activity of the protein, Phys. Chem. Chem. Phys., 2012, 14, 15482−15493.
    274. A. S. Roy, P. Ghosh, Characterization of the binding of flavanone hesperetin with chicken egg lysozyme using spectroscopic techniques: effect of pH on the binding, J. Inclusion Phenom. Macrocyclic Chem., 2016, 84, 21−34.
    275. L. Satish, S. Millan, V. V. Sasidharan, H. Sahoo, Molecular level insight into the effect of triethyloctylammonium bromide on the structure, thermal stability, and activity of Bovine Serum Albumin, Int. J. Biol. Macromol., 2018, 107, 186–193.
    276. M. Razaa, Y. Jiang, Y. Wei, A. Ahmada, A. Khan, Y. Qipenga, Insights from spectroscopic and in-silico techniques for the exploitation of biomolecular interactions between Human serum albumin and Paromomycin, Colloids Surf. B, 2017, 157, 242–253.

    QR CODE