簡易檢索 / 詳目顯示

研究生: 張勝瓏
Sheng-Lung Chang
論文名稱: 應用生物緩衝劑於分離共沸程序之設計與控制
Design and Control of Separating Azeotropic Processes by Biological Buffers
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 錢義隆
I-Lung Chien
李明哲
Ming-Jer Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 正丙醇脫水生物緩衝劑萃取法
外文關鍵詞: 1-propanol dehydration, Biological buffers, extraction
相關次數: 點閱:227下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於生物緩衝劑和水的親和性高但和有機溶劑的親和性極低,因此於有機水溶液中加入生物緩衝劑後,會大幅改變水與有機溶劑之間的相對揮發度,進而誘發液液分相的現象發生,此現象稱為緩衝析出 (buffering-out)。於正丙醇脫水程序中加入3-[4-(2-hydroxyethyl) -1-piperazinyl]-propanesulfonic acid (EPPS)作為共沸劑為例,進行了三個不同概念性設計的模擬,並利用產物皆達規格的Case C (萃取法)來探討三個不同設計變數所帶來的效應對能耗之影響,其中以分相槽的組成對能耗的影響最為劇烈。因為未熱整合前的能耗偏高,因此透過外部熱整合來降低其能耗,熱整合後能耗約可節省41 %。動態方面透過溫度分佈圖找出溫度變化最大的板,接著在適當的控制架構及策略下,去探討熱整合前後的動態響應,而從模擬結果可以看到所提出的控制策略能夠有效地處理進料流量及進料組成的擾動。


    The affinity of EPPS/Water is much higher than EPPS/organic solvent, so adding biological buffers in organic aqueous solution will change the relative volatility between water and organic solvent significantly, and then induce the liquid-liquid phase separation phenomenon, it is so called the buffering-out phenomenon.
    1-propanol (NPA) - water dehydration process by using 3-[4-(2-hydroxyethyl)-1-piperazinyl]-propanesulfonic acid (EPPS) as entrainer is illustrated as an example to simulate three different configurations in this study. it is found that the Case C configuration by using extraction approach can meet both products specification. And also, the influences on energy consumption of three kinds of effects are investigated in this thesis. As a result, the composition of decanter is the most influential factor on the total energy consumption. Furthermore, the external heat-integrated design is established for this process. It is found that 41 % energy reduction can be achieved after energy integration arrangement.
    For the process dynamics, overall control strategy with/without heat integrated configurations also proposed and different variations in the throughput changes and also feed composition change are investigated. All processes are maintained at high product purity and have excellent responses.

    致謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 非均相共沸蒸餾 5 1.2.2 萃取蒸餾 7 1.2.3 加鹽蒸餾 9 1.2.4 萃取法 10 1.3 研究動機與目的 12 1.4 組織章節 14 第2章 熱力學 15 2.1 前言 15 2.2 建立新成分 16 2.3 活性係數模式 17 2.4 三成分相圖(Ternary Phase Diagram) 22 第3章 穩態程序設計 27 3.1 前言 27 3.2 不同正丙醇去水程序之概念性設計 28 3.2.1 Case A:先分離出正丙醇的製程 28 3.2.2 Case B:先分離出水的製程 34 3.2.3 Case C:利用萃取法進行正丙醇去水之製程 40 3.3 不同設計變數帶來的效應對Case C總能耗之影響 46 3.3.1 效應I:F2底部出料(BR)組成中EPPS濃度對整體能耗之影響 46 3.3.2 效應II:分相槽組成對整體能耗之影響 50 3.3.3 效應III:F1底部出料組成對整體能耗之影響 58 3.4 熱整合製程的設計 62 3.4.1 提高DC1或者DC2的操作壓力 65 3.4.2 F2的能耗為零 67 3.4.3 F2的能耗不為零 69 3.5 可操作性之分析 71 3.5.1 新鮮進料於不同單元進料 71 3.5.2 Case C的限制 74 第4章 程序的動態與控制 77 4.1 前言 77 4.2 動態模擬 77 4.3 控制環路設計 79 4.4 熱整合前的動態響應 80 4.5 熱整合後的動態響應 88 第5章 結論 95 第6章 參考文獻 97

    [1]Arifin, S. and I. L. Chien, 2007: Combined Preconcentrator/Recovery Column Design for Isopropyl Alcohol Dehydration Process. Industrial & Engineering Chemistry Research, 46, 2535-2543.
    [2]Arifin, S. and I. L. Chien, 2008: Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Industrial and Engineering Chemistry Research, 47, 790-803.
    [3]Berg, L. and A.-I. Yeh, BREAKING OF TERNARY ACETATE-ALCOHOL-WATER AZEOTROPES BY EXTRACTIVE DISTILLATION. in Proceedings of the 1985 Summer National Meeting of the AIChE., Seattle, WA, USA, 1985, p. 59dp-59dp.
    [4]Bieker, T. and K. H. Simmrock, 1994: Knowledge integrating system for the selection of solvents for extractive and azeotropic distillation. Computers and Chemical Engineering, 18, S25-S29.
    [5]Chien, I. L., K.-L. Zeng and H.-Y. Chao, 2004: Design and Control of a Complete Heterogeneous Azeotropic Distillation Column System. Industrial and Engineering Chemistry Research, 43, 2160-2174.
    [6]Furter, W. F., 1992: Extractive distillation by salt effect. Chemical Engineering Communications, 116, 35-40.
    [7]Galindez, H. R. and A. Fredenslund, Distillation using salt effects. in Proceedings of the Distillation and Absorption 1987, September 7, 1987 - September 9, 1987, Brighton, Engl, 1987, p. A397-A411.
    [8]Good, N. E., G. D. Winget, W. Winter, T. N. Connolly, S. Izawa and R. M. M. Singh, 1966: Hydrogen Ion Buffers for Biological Research*. Biochemistry, 5, 467-477.
    [9]Guan, Y., T. H. Lilley and T. E. Treffry, 1993: New excluded volume theory and its application to the coexistence curves to aqueous polymer two-phase systems. Macromolecules, 26, 3971-3979.
    [10]Lee, L.-S. and C.-L. Lin, 1986: Salt Effect and Its Application to IPA-WATER Azeotrope. Journal of the Chinese Institute of Chemical Engineers, 17, 11-18.
    [11]Lei, Z., J. Zhang and B. Chen, 2002: Separation of aqueous isopropanol by reactive extractive distillation. Journal of Chemical Technology and Biotechnology, 77, 1251-1254.
    [12]Liu, F., C. Zhang, F. Huang and C. Zhang, 1993: Studies on separation of alcohols and water by extractive distillation. Fuel Science and Technology International, 11, 1537-1550.
    [13]Luyben, W. L., 2006: Control of a multiunit heterogeneous azeotropic distillation process. AIChE Journal, 52, 623-637.
    [14]Luyben, W. L., 2008: Design and control of a fully heat-integrated pressure-swing azeotropic distillation system. Industrial & Engineering Chemistry Research, 47, 2681-2695.
    [15]Luyben, W. L., 2010: Design and Control of the Methoxy-Methyl-Heptane Process. Industrial & Engineering Chemistry Research, 49, 6164-6175.
    [16]Orchilles, A. V., P. J. Miguel, E. Vercher and A. Martinez-Andreu, 2008: Isobaric Vapor−Liquid Equilibria for 1-Propanol + Water + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical & Engineering Data, 53, 2426-2431.
    [17]Othmer, D. F., AZEOTROPIC AND EXTRACTIVE DISTILLATION. in Proceedings of the Diamond Jubilee Historical/Review Volume. American Institute of Chemical Engineers 1983 Annual Meeting & Diamond Jubilee., Washington, DC, USA, 1983, p. 90-117.
    [18]Pham, H. N. and M. F. Doherty, SYNTHESIS AND DESIGN OF HETEROGENEOUS DISTILLATION SEQUENCES. in Proceedings of the American Institute of Chemical Engineers 1986 Annual Meeting., Miami Beach, FL, USA, 1986, p. AIChE, New York, NY, USA.
    [19]Rovaglio, M., T. Faravelli, G. Biardi, P. Gaffuri and S. Soccol, 1993: Key role of entrainer inventory for operation and control of heterogeneous azeotropic distillation towers. Computers and Chemical Engineering, 17, 535-547.
    [20]Ryan, P. J. and M. F. Doherty, 1989: Design/optimization of ternary heterogeneous azeotropic distillation sequences. AIChE Journal, 35, 1592-1601.
    [21]Seiler, M., C. Jork, A. Kavarnou, W. Arlt and R. Hirsch, 2004: Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids. AIChE Journal, 50, 2439-2454.
    [22]Taha, M., H.-L. Teng and M.-J. Lee, 2012: The buffering-out effect and phase separation in aqueous solutions of EPPS buffer with 1-propanol, 2-propanol, or 2-methyl-2-propanol at T = 298.15 K. The Journal of Chemical Thermodynamics, 47, 154-161.
    [23]Taha, M., H.-L. Teng and M.-J. Lee, 2013: Buffering-out: Separation of tetrahydrofuran, 1,3-dioxolane, or 1,4-dioxane from their aqueous solutions using EPPS buffer at 298.15 K. Separation and Purification Technology, 105, 33-40.
    [24]Yao, J.-Y., S.-Y. Lin and I. L. Chien, 2007: Operation and control of batch extractive distillation for the separation of mixtures with minimum-boiling azeotrope. Journal of the Chinese Institute of Chemical Engineers, 38, 371-383.
    [25]鄧翰嵐, M.Taha, 林河木 and 李明哲, 2011: 生物相容緩衝劑於分離程序的應用. 化工, 58, 85-91.

    QR CODE