簡易檢索 / 詳目顯示

研究生: 陳芸沄
Yun-Yun Chen
論文名稱: 常壓大氣電漿改質聚二甲基矽氧烷以電漿聚合接枝長時效親水薄膜之研究
Study on modification of polydimethylsiloxane with atmospheric pressure plasma and grafting of long-term hydrophilic film by plasma polymerization
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 廖淑娟
Shu-Chuan Liao
宮輔辰
F.-C. Kung
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 139
中文關鍵詞: 聚二甲基矽氧烷常壓大氣電漿電漿接枝聚合甲基丙烯酸羥乙酯親水時效性微波萃取
外文關鍵詞: PDMS, APPJ, plasma polymerization, hydrophilicity, aging effect, microwave extraction
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步及環保意識抬頭,人們逐漸意識到塑膠產品對於地球的危害,也使矽膠逐漸成為現今主流的環保材料,其中聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)為矽膠家族中的一員。PDMS 因本身結構特性使材料表面呈現疏水性,導致液體難以貼附於表面,侷限了許多應用。本研究透過常壓大氣電漿處理 PDMS 表面,經電漿處理後 PDMS 表面親水性短暫提升,但時效性極短,為了更長久的提升表面親水性,利用電漿聚合技術將 HEMA-Zein 薄膜(HEMA 為甲基丙烯酸羥乙酯,Zein 為玉米醇溶蛋白)接枝於 PDMS 表面上,提升 PDMS 表面親水時效性。HEMA-Zein 薄膜附有許多極性官能基,具有較長久的時效,以及親水親油表面,用途甚廣。常壓大氣電漿技術已是非常純熟,本研究與其他相關研究不同之處在於,大部分關於高分子表面以電漿做親水化改質之研究皆是以氬氣或氧氣為主,但本研究致力於綠色製程,因此採用最常見之空氣為電漿氣源,可大幅降低成本。經實驗證實空氣電漿於高分子表面有親水化效果,水接觸角從原始的 108.9°降至約 15°,搭配旋轉式電漿噴頭,空氣電漿之溫度低,不會因為高溫對高分子材料造成結構上的破壞HEMA-Zein 薄膜經電漿聚合後可耐水沖洗 10 次,親水時效性可持續一周,其附著強度高達 ASTM Standard 5B。經過細胞培養試驗發現 HEMA-Zein 薄膜具有不錯的生物相容性,最後結合天然植物萃取液做大腸桿菌試驗之抑菌應用,其抑菌圈最佳可達 25 mm,代表本研究未來具有商品化之潛力。


    As technology advances and environmental consciousness grows, people are becoming
    increasingly aware of the detrimental effects of plastic products on the planet. This has led to a gradual shift towards silicone as a popular eco-friendly material, with PDMS(Polydimethylsiloxane) being a member of the silicone family. However, the hydrophobic of PDMS surfaces, which makes it difficult for liquids to adhere, has limited its applications.In this study, we employed atmospheric pressure plasma (APPJ) treatment to modify the surface of PDMS. While the plasma treatment temporarily enhanced the hydrophilicity of the PDMS surface, its effects were short-lived. To achieve a longer-lasting improvement in surface hydrophilicity, we utilized plasma polymerization to graft a HEMA-Zein film onto the PDMS surface. This approach aimed to enhance the durability of surface hydrophilicity on PDMS. The HEMA-Zein film possesses numerous polar functional groups, providing long-lasting hydrophilicity, making it versatile in various applications.APPJ technology is well-established. What sets this study apart is that, unlike most research on plasma hydrophilization of polymer surfaces, which mainly employs argon or oxygen as the plasma gas source, we focused on green processes and utilized air, the most common gas source, to significantly reduce costs. Experimental results confirmed that air plasma also satisfactory hydrophilization effects on polymer surfaces. The water contact angle is reduced from the original 108.9° to about 15°. Furthermore, by using rotating plasma nozzle, the temperature of the air plasma remains low, preventing structural damage to the polymer materials caused by high temperatures. The plasma polymerized film not only withstands water rinsing but also exhibits remarkable adhesion strength PDMS. Cell culture experiments demonstrated the excellent biocompatibility of the HEMA-Zein film. Finally, combining the film with natural plant extracts successfully demonstrated antibacterial applications against E.coli. This research shows potential for future commercialization.

    摘要 ABSTRACT 總目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機 第二章 文獻回顧 2.1 高分子材料介紹 2.1.1 高分子種類 2.1.2 特殊功能性高分子材料 2.1.3 生醫高分子材料 2.1.4 PDMS定性分析 2.1.5 微針貼片 2.2 電漿簡介 2.2.1 電漿原理 2.2.2 電漿反應機制 2.2.3 電漿分類與系統 2.2.4 常壓大氣電漿 2.3 高分子表面處理 2.3.1 親水性改質 2.3.2 電漿抗菌 2.3.3 電漿誘導接枝聚合 2.4 植物萃取 2.4.1 萃取法介紹 2.4.2 檜木 2.4.3 魚腥草 第三章 實驗方法 3.1 實驗總覽 3.2 實驗材料與儀器 3.2.1 實驗材料介紹 3.2.2 實驗儀器介紹 3.3 實驗設備 3.3.1 常壓電漿系統 3.3.2 微波萃取設備 3.4 檢測儀器與分析 3.4.1 熱重分析儀 3.4.2 光學放射頻譜儀 3.4.3 接觸角量測儀 3.4.4 場發射掃描式電子顯微 3.4.5 傅立葉轉換紅外線光譜儀 3.4.6 白光干涉儀 3.4.7 百格測試 3.4.8 紫外光/可見光光譜儀 (DPPH自由基數目測定) 3.5 實驗製程 3.5.1 基材前處理 3.5.2 電漿親水化處理 3.5.3 HEMA-Zein溶液製備及塗佈 3.5.4 電漿聚合處理 3.5.5 微波萃取及應用 第四章 結果與討論 4.1 常壓大氣電漿及 PDMS 分析 4.1.1 電漿物種分析 4.1.2 PDMS 之特性分析 4.1.3 電漿溫度分析 4.2 電漿親水化處理分析 4.2.1 液體表面張力分析 4.2.2 PDMS 親水性分析 4.2.3 PDMS 表面能分析 4.2.4 PDMS之表面形貌 4.2.5 PDMS 時效性量測 4.3 電漿誘導接枝聚合HEMA-Zein薄膜分析 4.3.1 HEMA-Zein薄膜之性質探討 4.3.2 HEMA-Zein薄膜親水性分析 4.3.3 HEMA-Zein薄膜表面能量測 4.3.4 HEMA-Zein薄膜之表面形貌 4.3.5 HEMA-Zein薄膜時效性量測 4.3.6 HEMA-Zein薄膜附著力測試 4.3.7 HEMA-Zein薄膜水洗測試分析 4.3.8 HEMA-Zein薄膜毒性測試 4.4 HEMA-Zein薄膜與微波萃取液應用與分析 4.4.1 萃取液於 HEMA-Zein薄膜之接觸角分析 4.4.2 萃取液於 HEMA-Zein薄膜之抗氧化量測 4.4.3 萃取液於HEMA-Zein薄膜之抗菌測試 第五章 結論 第六章 未來展望 第七章 參考文獻

    [1] Referline,陳澄河,南臺科技大學化學工程系「無所不在的高分子材料」,科技大觀園,《科學發展,559期,4-5頁》,(2019年7月)。
    [2] 高分子材料導論,徐武軍,五南圖書出版股份有限公司,( 2012)。
    [3] P. Maharjan, B. W. Woonton, L. E. Bennett, G. W. Smithers, K. DeSilva, M. T. W. Hearn. (2008). Novel chromatographic separation—The potential of smart polymers. Innovative food science & emerging technologies, 9(2), 232- 242
    [4] Y. Ikada,"Surface modification of polymers for medical applications," Biomaterials, Vol. 15, pp.725-736 (1994).
    [5] 應用高分子化學,林建中,高立出版集團,(2008)。
    [6] 周君穎,詹莉芬,葉名倉,「聚二甲基矽氧烷」,科學Online,高瞻自然科學教學資源平台 (2010)。
    [7] PDMS: a review Introduction to polydimethylsiloxane, 引用網址:https://www.elveflow.com/microfluidic-reviews/general-microfluidics/the-polydimethylsiloxane-pdms-and-microfluidics/
    [8] M. K. Chaudhury, G .M .Whitesides, "Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly (dimethylsiloxane) and their chemical derivatives," Langmuir,Vol. 7, pp.1013- 1025 (1991).
    [9] 陳育詩,「矽膠材質於微幫浦之研究」,碩士論文,國立臺灣大學 (2003)。
    [10] A Brief Guide to Microfluidic Device Applications In the Life Sciences, https://harrickplasma.com/wp-content/uploads/2020/07/A-Brief-Guide-to-Microfluidic-Device-Applications-in-Life-Sciences.pdf.
    [11] J.Yong, F. Chen, Q. Yang"Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser" American Chemical Society, (2013).
    [12] N.E. Stankova, P.A. Atanasov, R.G. Nikov, R.G. Nikov, N.N. Nedyalkov, T.R. Stoyanchov, et al. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing, Appl Surf Sci, 374, pp. 96-103, (2016).
    [13] “Global Markets and Technologies for Advanced Drug Delivery Systems” BCC Research, BCC Research,(2022).
    [14] Molecules 2016, 21(12), 1719; doi:10.3390/molecules21121719,Pharmaceutics, 7(4), 438-470; (2015).
    [15] 3M科技,第三大給藥系統:經皮藥物傳輸系統 TDDS,引用網址:https://www.3m.com.tw/3M/zh_TW/medical-device-components-tw/resources/industry-insights/articles/3m-medtech-transdermal-drug-delivery-system-solutions/。
    [16] J. Arya, M.R. Prausnitz”Microneedle patches for vaccination in developing countries” , Journal of Controlled ReleaseVolume, 240, , Pages 135-14128 ,October (2016)
    [17] S. P Sullivan, D. G Koutsonanos, M. d. P. Martin, J. W. Lee, V. Zarnitsyn,” Dissolving polymer microneedle patches for influenza vaccination” Nature Medicine volume 16, pages915–920 (2010).
    [18] M.R. Prausnitz, “Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin” Annual Review of Chemical and Biomolecular Engineering, Vol. 8:177-200, (2017).
    [19] Ming-Hung Ling, Mei-Chin Chen,” Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats” Acta Biomaterialia,
    Volume 9, Issue 11, Pages 8952-8961, (November 2013).
    [20] F. Hu, Q. Gao, J. Liu,” Smart microneedle patches for wound healing and management” Journal of Materials Chemistry B, Issue 13,( 2023).
    [21] 怡定興科技,引用網址:https://www.wincoatco.com/。
    [22] 董家齊,陳寬任,成功大學物理學系「奇妙的物質第四態–電漿」《科學發展》,354期,52 ~ 59頁,2002年6月。
    [23] U. Kogelschatz, Atmospheric-pressure plasma technology, Plasma Phys. Control. Fusion. (2004).
    [24] M. Morra, E. Occhiello, R. Marola, F. Garbassi, "On the aging of oxygen plasmatreated polydimethylsiloxane surfaces," Journal of Colloid and Interface Science, Vol. 137, pp.11-24 (1990).
    [25] 張朝雯,國立交通大學,機械所碩士論文,變壓耦合式電漿製程設備之先進設備控制,(2003)。
    [26] B. Ruben, M. Elisa, L. Leandro, M. Victor, "Oxygen plasma treatments of polydimethylsiloxane surfaces: effect of the atomic oxygen on capillary flow in the microchannels," Micro & Nano Letters, Vol. 12, pp.754-757 (2017).
    [27] A. Schulze, J.Y. Jeong, S.E. Babayan, J. Park, G.S Selwyn, "The atmosphericpressure plasma jet," IEEE Transactions on Plasma Science , Vol. 16, pp. 1685-1694 (1998).
    [28] T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, "Investigation of reactive species using various gas plasmas," Rsc Advances, Vol. 4, pp. 39901-39905 (2014).
    [29] 洪德裕,國立台灣師範大學,化學所碩士論文,微小化介電質氮氣電漿放射光譜應用於氣象層析偵測器之研製,(2014)。
    [30] 王培智,熱電漿應用與診斷,引用網址:http://140.134.32.129/edu/discourse/pjwang99/Speech%20Content.pdf。
    [31] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy , Vol. 61, pp. 2- 30 (2006).
    [32] M. Goldman , A. Goldman and R. S. Sigmond, “The corona discharge, its properties and specific uses”, Published by De Gruyter (January 1, 2009).
    [33] X. Xu, “Dielectric barrier discharge — properties and applications” Thin Solid Films,Volume 390, Issues 1–2, Pages 237-242, (30 June 2001).
    [34] N. Venkatramani, “Industrial plasma torches and applications” Vol. 83, No. 3, pp. 254-262 (9 pages) (10 August 2002).
    [35] A. Schutze, J. Y. Jeong, S. E. Babayan, Jaeyoung Park, G. S. Selwyn and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," in IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, doi: 10.1109/27.747887, (1998).
    [36] Y.L. Kuo, Y.S. Sun, M.H. Ho, “The Setup of Automatic Atmospheric Pressure Plasma System for the Odor Removal on the Medical Facial Masks” 科儀新知 227 期 (2022)。
    [37] 《武漢肺炎》台科大為推動防疫作業,與企業共同合作,利用大氣電漿將口罩滅菌除味延長使用,引用網址:https://www.gloria.ntust.edu.tw/news_detail/117.htm,(2020)。
    [38] J.K. Pike, T, Ho, K, J, Wynne "Water-induced surface rearrangements of poly (dimethylsiloxane− urea− urethane) segmented block copolymers," Chemistry of Materials, Vol. 8, pp.856-860 (1996)
    [39] 工研院 IEK,探索高分子材料在生醫產業發展與商機,(2014)。
    [40] A. Bhattacharya a, N. Misra, Grafting: a versatile means to modify polymers: Techniques, factors and applications, Progress in Polymer Science Volume 29, Issue 8, Pages 767-814, (2004).
    [41] M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview” Composites Part B: Engineering, Volume 43, Issue 7, Pages 2883-2892, (2012).
    [42] D.S. Bodas, S.M. Desai, S.A. Gangal, "Deposition of plasma-polymerized hydroxyethyl methacrylate (HEMA) on silicon in presence of argon plasma," Applied surface science, Vol. 245, pp. 186-190 (2005).
    [43] P. Alves, J. F. J. Coelho, J. Haack, A. Rota, A. Bruinink, "Surface modification and characterization of thermoplastic polyurethane", European Polymer Journal, Vol. 45, pp. 1412-1419 (2009).
    [44] M.J. Nicol, T.R. Brubaker, B.J. Honish II, “Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species” Scientific Reports, Published: 20 (February 2020).
    [45] K. Vasilev, S.S. Griesser, H.J. Griesser, “Antibacterial Surfaces and Coatings Produced by Plasma Techniques”, https://doi.org/10.1002/ppap.201100097. (04 October 2011).
    [46] N.N. Misra, C. Jo, ”Applications of cold plasma technology for microbiological safety in meat industry”, Trends in Food Science & Technology, Volume 64, Pages 74-86, (June 2017).
    [47] D.S. Wavhal, E.R. Fisher, ” Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization”, Journal of Membrane Science, Volume 209, Issue 1, Pages 255-269, (1 November 2002).
    [48] A. Kyzioł, K. Kyzioł, “Chapter 4 - Surface Functionalization With Biopolymers via Plasma-Assisted Surface Grafting and Plasma-Induced Graft Polymerization—Materials for Biomedical Applications”, Biopolymer Grafting Applications, Pages 115-151(2018).
    [49] B. Gupta, C. Plummer, I. Bisson, P. Frey, J. Hilborn, “Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films” Biomaterials, Volume 23, Issue 3, Pages 863-871, (February 2002).
    [50] 行政院農業委員會,「藥用植物的歷史-迪奧斯克理德斯(Dioscorides)之《藥物論》(古希臘語:Περὶ ὕλης ἰατρικῆς,拉丁語:De materia medica)」,引用網址:https://kmweb.coa.gov.tw/subject/subject.php?id=37173,(2014)。
    [51] 衛生福利部中醫藥司,「本草綱目」,引用網址:https://dep.mohw.gov.tw/DOCMAP/cp-831-5989-108.html,(2013)。
    [52] S.A. DAHANUKAR, R.A. KULKARNI, N.N. REGE, PHARMACOLOGY OF MEDICINAL PLANTS AND NATURAL PRODUCTS, Indian Journal of Pharmacology; 32: S81-S118, (2000).
    [53] Z. Lei, C. Li & B. Chen, “Extractive Distillation: A Review”, Pages 121-213 | Published onlin, (15 Feb 2007).
    [54] C. Boutekedjiret, F. Bentahar, R. Belabbes, J. M. Bessiere, “Extraction of rosemary essential oil by steam distillation and hydrodistillation” , Research Article, (01 October 2003).
    [55] 「芳療百科|精油如何萃取?」,引用網址:https://www.aliztwshop.com/blog/posts/encyclopedia-of-essential-oil-extraction,(2020)。
    [56] 高鹿興業有限公司,控制真空蒸餾,引用網址:https://www.genndih.com/cht/faq/%E5%A3%93%E5%8A%9B%E6%AF%94%E4%BE%8B%E9%96%A5%E6%87%89%E7%94%A8/%E6%8E%A7%E5%88%B6%E7%9C%9F%E7%A9%BA%E8%92%B8%E9%A4%BE.html。
    [57] W. Pensuk, T. Padumanonda, C. Pichaensoonthon, “Comparison of the Chemical Constituents in Michelia alba Flower Oil Extracted by Steam Distillation, Hexane Extraction and Enfleurage Method” Original Article, Vol.5, No.1, (2007).
    [58] 「精油百科 | 精油知識知多點,常見精油萃取方式」https://www.xuehua.us/a/5eb760a186ec4d0bd8d47edd?lang=zh-hk,(2018)。
    [59] L.M. Khan, M.A. Hanna, “Expression of oil from oilseeds—A review”, Journal of Agricultural Engineering Research, Volume 28, Issue 6, Pages 495-503, (November 1983).
    [60] 果拉樹,有機葡萄籽油,「Fethiann原料小聚 分享有機葡萄籽油的保養熱點」,引用網址:
    https://www.gracieux.tw/blogs/%E5%8E%9F%E6%96%99%E5%B0%8F%E7%89%A9/77127(2021-08-09)。
    [61] <博士論文>クラッベ, エドワード, EDWARD, CRABBE, エドワード, クラッペ, 「再利用可能な資源を原料とし生産されたソルベントを抽出しながら発酵させる高効率型アセントンブタノール発酵」(1999)。
    [62] IF Crystal X Soul Aromatherapy,「精油的萃取方式取決於植物的特性」,引用網址:https://www.facebook.com/2280932125489073/posts/2286721574910128/,(2019)。
    [63] J.L. Hedrick, L.J. Mulcahey & L.T. Taylor, “Supercritical fluid extraction”, Fundamental Review, (May 1992).
    [64] 小小科學實驗室,「超臨界萃取SCF」,引用網址:http://newscienceview.blogspot.com/2014/06/scf.html,(2014)。
    [65] K. Vilkhu, R. Mawson, L. Simons, D. Bates, “Applications and opportunities for ultrasound assisted extraction in the food industry — A review” Innovative Food Science & Emerging Technologies, Volume 9, Issue 2, Pages 161-169, (April 2008).
    [66] N.A. Idris, N. Ismail, K.S. Manimaran and N.S.M.Salim, “A Review of Green Technologies for the Extraction of Vanillin from Vanilla planifolia Leaves: Advantages and Limitations”, Malaysian Journal of Chemistry, Vol. 24(3), 29-43(2022).
    [67] C.S. Eskilsson, E. Björklund, “Analytical-scale microwave-assisted extraction” Journal of Chromatography A Volume 902, Issue 1, Pages 227-250,(24 November 2000).
    [68] 利泓科技,「減碳專刊─節能環保的精油萃取技術」,引用網址:https://www.rightek.com.tw/,(2022)。
    [69] M. Koubaa, N. Imatoukene, L. Drévillon, E. Vorobiev, “Current insights in yeast cell disruption technologies for oil recovery: A review”, Chemical Engineering and Processing - Process Intensification, Volume 150, (April 2020).
    [70] 藝術家 陳東元,大元山翠峰湖,「紅檜與台灣扁柏」,引用網址:http://www.taiwanland.tw/06Dah-yuan/discussion/Chamaecyparis.html。
    [71] 典藏者:莊貴竣,「紅檜及扁柏」照片引用自楊智凱博士攝影作品,引用網址:https://openmuseum.tw/muse/digi_object/380bfb4af777686ca1f932d06248684b。
    [72] 郭佩旻,「紅檜心材抽出物之生物活性評估」,碩士論文, 國立中興大學森林系。
    [73] 石尹華,「扁柏油酚於口腔疾病防治及牙科根管封填材料應用之潛力」,博士論文,國立陽明大學牙醫學院口腔生物所。
    [74] M. Kumar, S.K. Prasad, and S. Hemalatha, “A current update on the phytopharmacological aspects of Houttuynia cordata Thunb”, Pharmacogn Rev.; 8(15) 22–35, (2014).
    [75] 「蕺菜(魚腥草)」,引用網址:https://m.xuite.net/blog/m49.k5083/twblog/153768475,(2010)。
    [76] 何菁菁,「魚腥草對糖尿病小鼠之抗氧化抗發炎效果」,碩士論文,中國醫藥大學營養學系(2014)。
    [77] 祐橋機械,不鏽鋼冷凍式空氣乾燥機,引用網址:http://www.air-yc.com/。
    [78] 圓派科學儀器,引用網址:http://www.paiinstru.com/。
    [79] T Chen, M S Chiu, C N Weng, „Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids“, Journal of Applied Physics 100, 074308, (2006).
    [80] Y. Zhang, Z. Zhang, J. Yang, Y. Yue, “A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer” nanomaterials, (2022).
    [81] J.J. Jasper, “The Surface Tension of Pure Liquid Compounds”, Journal of Physical and Chemical Reference Data 1, 841–1010 (1972).
    [82] 「低表面能趨勢–解決不同表面粘合的解決方案」,Pros Technology,引用網址:https://prostech.vn/low-surface-energy-trend-solutions-to-differentsurface-bonding。
    [83] A. MOHAMMED, A. ABDULLAH, “SCANNING ELECTRON MICROSCOPY (SEM): A REVIEW” ISSN 1454 – 8003, Proceedings of 2018 International Conference on Hydraulics and Pneumatics – HERVEX, November 7-9, Băile Govora, Romania(2018).
    [84] A.V. Kudryavtsev, “3D Reconstruction in Scanning Electron Microscope : from image acquisition to dense point cloud”, (Oct 2017).
    [85] M. Jackson &H.H. Mantsch, “The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure” Critical Reviews in Biochemistry and Molecular Biology, Volume 30, - Issue 2 (1995).
    [86] 利泓科技,FTIR分析原理|傅立葉轉換紅外光譜儀「紅外線光譜儀是不可或缺的材料定性工具」引用網址:https://www.rightek.com.tw/。
    [87] RETSH,PLANETARY BALL MILL PM 100,引用網址:https://www.retsch.com/。
    [88] J.C. Wyant, “White light interferometry”, (9 July 2002).
    [89] P. Sandoz, “Wavelet transform as a processing tool in white-light interferometry”, Optics Letters Vol. 22, Issue 14, pp. 1065-1067 (1997).
    [90] SCIENCE GATE, CCI HD,引用網址:https://scigate.com.sg/。
    [91] J. Schirmer; J. Roudenko; M. Reichenberger, “Adhesion Measurements for Printed Electronics: A Novel Approach to Cross Cut Testing”, International Spring Seminar on Electronics Technology(2018).
    [92] JARP,引用網址:https://www.jarp.nl/producten/cross-cut-adhesion-tester/。
    [93] Standard Test Methods for Rating Adhesion by Tape Test, (2017).
    [94] M. Aceto and T. Vitorino, “UV-Vis spectroscopy” the journal Physical Sciences Reviews , Requires Authentication Published by De Gruyter (November 14, 2018).
    [95] D. Bodas, C. Khan-Malek, “Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation” Sensors and Actuators B: Chemical, Volume 123, Issue 1, Pages 368-373, (10 April 2007).
    [96] National Institute of Standards and Technology, https://www.nist.gov/.
    [97] J.Zhou, A.V. Ellis, N.H. Voelcke, “Recent developments in PDMS surface modification for microfluidic devices”, (28 December 2009).
    [98] A. Zdziennicka, B. Janczuk, “The adsorption of cetyltrimethylammonium bromide and propanol mixtures with regard to wettability of polytetrafluoroethylene II. Adsorption at polytetrafluoroethylene–aqueous solution interfaceand wettability” Journal of Colloid and Interface Science 318 (2008) 15–22.
    [99] K. Szymczyk, A. Zdziennicka, J. Krawczyk, B. Janczuk, “Wettability, adhesion, adsorption and interface tension in the polymer/surfactant aqueous solution system: II. Work of adhesion and adsorption of surfactant at polymer–solution and solution–air interfaces”, Colloids and Surfaces A: Physicochem. Eng. Aspects 402 (2012) 139–145.
    [100] L. T. Huang, T. F. Yeh, Y. L. Kuo, P. C. Chen, C. M. Chen, "Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice," Pediatrics & Neonatology, Vol. 56, pp. 19-24 (2015).
    [101] S.M Hong, S.H Kim, J.H Kim, "Hydrophilic Surface Modification of PDMS Using Atmospheric RF Plasma"Journal of Physics: Conference Series(2006).
    [102] ,”Plasma-Stimulated Super-Hydrophilic Surface Finish of Polymers”, Special Issue Surface Chemistry of Polymers (2020)
    [103] D.E Packham, “Surface energy, surface topography and adhesion”, Volume 23, Issue 6, Pages 437-448, (2003).
    [104] A. Rudawska, E. Jacniacka, “Analysis for determining surface free energy uncertainty by the Owen–Wendt method” International Journal of Adhesion and Adhesives, Volume 29, Issue 4, Pages 451-457, (June 2009).
    [105] H.T. Kim, O.C. Jeong, "PDMS surface modification using atmospheric pressure plasma"Microelectronic Engineering, Volume 88, Issue 8, Pages 2281-2285, August 2011.
    [106] D. Bodas, J.Y. Rauch, C. Khan-Malek "Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma," European Polymer, Journal , Vol. 44, pp. 2130-2139 (2008).
    [107] K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, C. Cardinaud, “Mechanisms of Oxygen Plasma Nanotexturing of Organic Polymer Surfaces: From Stable Super Hydrophilic to Super Hydrophobic Surfaces” American Chemical Society, 2009.
    [108] Karkhaneh, A., Mirzadeh, H., & Ghaffariyeh, A. R.. “Simultaneous graft copolymerization of 2‐hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two‐step plasma treatment”. Journal of applied polymer science, 105(4), 2208-2217 (2007).
    [109] D. Quéré , “Non-adhesive lotus and other hydrophobic materials” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, (11 January 2008).
    [110] 「細矽奈米線,驚奇大無限」,《科學發展》2013年6月,486期,60 ~ 65頁。
    [111] S.Torino, B. Corrado, M. Iodice, “PDMS-Based Microfluidic Devices for Cell Culture” belongs to the Special Issue Microfluidics and Nanofluidics, (2018)
    [112] Tinneke Jacobs, Rino Morent, Nathalie De Geyter, Peter Dubruel ,Christophe Leys, "Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction" Plasma Chemistry and Plasma Processing,32, pages1039–1073 (2012)
    [113] F. Akther, S.B. Yakob, N.T. Nguyen, "Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices" Biosensors Volume 10 , Issue 11, (2020).
    [114] 陳博光教授聯合診所,「自由基(Free radicals) 是什麼?」引用網址:https://www.pqchen.com.tw/。
    [115] F. Bourgaud, A. Gravot, S. Milesi, E. Gontier, “Production of plant secondary metabolites: a historical perspective”, Plant Science, Volume 161, Issue 5, Pages 839-851, (October 2001).
    [116] C.L. Gorlenko, H.Y. Kiselev, E.V. Budanova, “Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics?”, Antibiotics, Volume 9, (2020).
    [117] S.G. Deans, G. Ritchie, “Antibacterial properties of plant essential oils” International Journal of Food Microbiology, Volume 5, Issue 2, Pages 165-180, (November 1987).
    [118] 林業試驗所木材纖維組‧何振隆,中興大學森林學系‧蘇裕昌「精油之抗菌活性」,林業研究專訊 Vol.15 No.3 (2008)。
    [119] K.H. Chiow , M.C. Phoon, Thomas Putti, Benny K.H. Tan , Vincent T. Chow, "Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection", Asian Pacific Journal of Tropical Medicine, Volume 9, Issue 1, Pages 1-7, January 2016.
    [120] S.S. Cheng, C.Y. Lin, N.J. Chung, S.T. Chang “Evaluation of Wood Essential Oils from Five Indigenous Conifers in Taiwan Against Plant Pathogenic Fungi” NTU(2018).
    [121] C.L. Yen, J.H. Chen, H.Y. Chien, J.S. Cheng, M.S. Lee, “Using a simple spectrophotometer to analyze cypress hydrolat composition”, Mathematical Biosciences and Engineering (2021).

    無法下載圖示 全文公開日期 2028/08/24 (校內網路)
    全文公開日期 2028/08/24 (校外網路)
    全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE