簡易檢索 / 詳目顯示

研究生: 黃一桓
Yi-Huan Huang
論文名稱: 模型預測控制於撓性樑主動抑振控制研究之實驗探討
An Experimental Study on Active Vibration Control of Flexible Beam Using Model Predictive Control
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 陳亮光
Liang-Kuang Chen
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 133
中文關鍵詞: 撓性樑主動式抑振反覆模型預測控制類神經網路求解限制處理
外文關鍵詞: flexible beam, active vibration control, repetitive model predictive control, constraint handling, neural network
相關次數: 點閱:208下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 撓性樑常見於各式結構系統中,其低阻尼特性易受外界干擾影響系統效能、甚至影響結構體的穩定與安全性,然使用傳統之主動抑振方法已無法滿足日愈嚴苛的效能與限制要求,因此近來年陸續有許多學者開始應用各種進階控制方法改善撓性樑與結構系統之主動抑振響應。本研究主要探討模型預測控制於撓性樑之抑振效能與其實現結果。本文分別以模型預測控制、包含終端狀態之模型預測控制、結合反覆控制之模型預測控制等控制問題型式進行主動抑振控制器設計,並著重模型預測控制於週期性干擾之抑振效果與特性。為了減少模型預測控制最佳化求解過程中龐大運算量的問題,本文一併將以類神經網路最佳化求解器之快速模型預測控制方法納入探討,並進行撓性樑週期性干擾和脈衝干擾輸入之主動抑振模擬及實驗。除了分析多種設計參數對於撓性樑主動抑振效能之影響外,文中亦針對模型預測控制的重要功能「限制處理」進行一系列結果探討。綜合上述本論文最後歸納幾點參數設計之建議以供設計者日後參考。


    As a common example in various kinds of structural systems, flexible beam has the light damping property which easily affects the system performance and structure safety. To compensate for this drawback active vibration control is one proven-effective technique which embeds actuators and sensors into the structures to reduce the influences of disturbances in real-time. Because applying classical active vibration control methods is unable to satisfy the increasingly stringent requirements and constraints, recently researchers have started to use advanced control methods for vibration suppression of flexible structures. This research focuses on the experimental investigation on vibration control of a flexible beam using Model Predictive Control (MPC), an advanced optimal control method which can handle constraints at each sampling step. Using the Hildreth’s optimization solver, the work considers three different MPC strategies, including a basic MPC, a terminal-state involved MPC, and a MPC combined with repetitive control (RMPC), for control design and performance evaluation. The study specifically investigates the periodic disturbance rejection performance of applied MPC methods, showing the effectiveness of RMPC. To reduce the computational burden and improve the practicability of MPC in active vibration control applications, this study also applies a recurrent neural network as fast optimization solver, to implement the aforementioned MPC strategies. Besides the parameter analysis, the experimental results particularly show the constraint handling and performance improvement by considering the input constraints in the MPC design. Finally, this thesis summarizes several concluding remarks on control parameters selection as a guideline for future designers.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XV 符號表 XVI 第一章  緒論                                     1 第二章  模型預測控制理論                               7 2.1 基本概念與原理                              7 2.1.1 預測區間與控制區間之改念                  10 2.1.2 成本函數                          10 2.1.3 二次規劃                          11 2.2 限制條件                                12 2.2.1 輸入限制                          13 2.2.2 輸出限制                          13 2.3 簡化雙層類神經網路                           14 第三章 模型預測控制器設計                              16 3.1 模型預測控制器建立                           16 3.2 結合狀態估測器之模型預測控至器設計                   21 3.3 結合反覆控制之模型預測控制器設計                    23 3.3.1 反覆控制概念                        23 3.3.2 反覆模型預測控制設計                    25 3.4 簡化雙層類神經網路求解之模型預測控制器設計               29 3.5 包含終端狀態之模型預測控制器設計                    32 第四章 實驗結果與討論                                36 4.1 系統架設                                 36 4.2 系統識別                                 40 4.3 模型預測控制器應用於主動抑振系統之設計參數探討              43 4.3.1 模型預測控制器之參數影響                   44 4.3.2 反覆模型預測控制器之參數影響                 59 4.3.3 包含終端狀態之模型預測控制器之參數影響            64 4.3.4 包含終端狀態之反覆模型預測控制器之參數影響          80 4.3.5 各個模型預測控制之參數影響總結                85 4.4 結果比較                                 86 4.4.1 不考慮輸入限制時之結果比較與討論               86 4.4.2 考慮輸入限制時之結果比較與討論               100 第五章 結論與未來研究方向                              118 5.1 結論                                  118 5.2 未來研究方向                             121 參考文獻                                        123

    [1] M. Komori, T. Ide, S. Fukata, and T. Matsushita, “Vibration Suppression of a Disk-Shaped Superconductor with PD Control,” Cryogenics, Vol. 37, No. 4, pp. 195-199, April 1997.

    [2] C. Aguilar-Ibaňez and H. Sira-Ramirez, “PD Control for Active Vibration Damp-ing in an Underactuated Nonlinear System,” Asian Journal of Control, Vol. 4, No. 4, pp. 502-508, December 2002.

    [3] S. M. Lin, “PD Control of a Rotating Smart Beam with an Elastic Root,” Journal of Sound and Vibration, Vol. 312, No. 1-2, pp. 109-124, April 2008.

    [4] J. Fanson and T. Caughek, “Positive Position Feedback Control for Large Space Structures,” AIAA Journal, Vol. 28, No. 4, pp. 717-724, 1990.

    [5] A. Baz and S. Poh, “Optimal Vibration Control with Modal Positive Position Feedback,” Optimal Control Application and Methods, Vol. 17, No. 2, pp. 141-149, 1996.

    [6] J. Shan, H. T. Liu, and D. Shun, “Slewing and Vibration Control of a Single-Link Flexible Manipulator by Positive Position Feedback (PPF),” Mechatronics, Vol. 15, No. 4, pp. 487-503, May 2005.

    [7] M. R. Bai and G. M. Lin, “The Development of a DSP-Based Active Small Am-plitude Vibration Control System for Flexible Beams by Using the LQG Algo-rithms and Intelligent Materials,” Journal of Sound and Vibration, Vol. 198, No. 4, pp. 411-427, December 1996.

    [8] J. H. Han, K. H. Rew, and I. Lee, “An Experimental Study of Active Vibration Control of Composite Structures with a Piezo-Ceramic Actuator and a Piezo-Film Sensor,” Smart Materials and Structures, Vol. 6, No. 5, pp.549-558, October 1997.

    [9] I. R. Petersen and H. R. Pota, “Minimax LQG Optimal Control of a Flexible Beam,” Control Engineering Practice, Vol. 11, No. 11, pp. 1273-1287, November 2003.

    [10] A. Tzes and S. Yurkovich, “An Adaptive Input Shaping Control Scheme for Vi-bration Suppression in Slewing Flexible Structures,” IEEE Transactions on Control Systems Technology, Vol. 1, No. 2, pp.114-121, June 1993.

    [11] Y. Zeng, A. D. Araujo, and S. N. Singh, “Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft,” Acta Astronautica, Vol. 44, No. 1, pp. 11-22, January 1999.

    [12] K. J. Yang, K. S. Hong, and F. Matsuno, “Robust Adaptive Boundary Control of an Axially Moving String Under a Spatiotemporally Varying Tension,” Journal of Sound and Vibration, Vol. 273, No. 4-5, pp. 1007-1029, June 2004.

    [13] F. Peng, A. Ng, and Y. R. Hu, “Actuator Placement Optimization and Adaptive Vibration Control of Plate Smart,” Journal of Intelligent Material Systems and Structures, Vol. 16, No. 3, pp. 263-271, March 2005.

    [14] Q. Hu, G. Ma, and L. Xie, “Robust and Adaptive Variable Structure Output Feedback Control of Uncertain Systems with Input Nonlinearity,” Automatica, Vol. 44, No. 2, pp. 552-559, February 2008.

    [15] M. Battaini, F. Casciati, and L. Faravelli, “Fuzzy Control of Structural Vibration. An Active Mass System Driven by a Fuzzy Controller,” Earthquake Engineering and Structural Dynamics, Vol. 27, No. 11, pp. 1267-1276, 1998.

    [16] M. D. Symans and S. W. Kelly, “Fuzzy Logic Control of Bridge Structures Using Intelligent Semi-Active Seismic Isolation Systems,” Earthquake Engineering and Structural Dynamics, Vol. 28, pp. 37-60, 1999.

    [17] T. Yoshimura, K. Nakaminami, M. Kurimoto, and J. Hino, “Active Suspension of Passenger Cars Using Linear and Fuzzy-logic Controls,” Control Engineering Practice, Vol. 7, No. 1, pp. 41-47, January 1999.

    [18] S. D. Snyder and N. Tanaka, “Active Control of Vibration Using a Neural Net-work,” IEEE Transaction on Neural Networks, Vol. 6, No. 4, July 1995.

    [19] M. Bouchard, B. Paillard, and C. T. L. Dinh, “Improved Training of Neural Net-works for the Nonlinear Active Control of Sound and Vibration,” IEEE Transac-tions on Neural Networks, Vol. 10, No. 2, March 1999.

    [20] D. L. Guo, H. Y. Hu, and J. Q. Yi, “Neural Network Control for a Semi-Active Vehicle Suspension with a Magnetorheological Damper,” Journal of Vibration and Control, Vol. 10, No. 3, pp. 461-471, March 2004.

    [21] J. M. Maciejowski, Predictive Control with Constraints, Prentice-Hall, 2002.

    [22] G. Takacs and B. Rohal’-Ilkiv, Model Predictive Vibration Control: Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures, Springer-Verlag, London Limited, 2012.

    [23] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model Predictive Heuristic Control: Applications to Industrial Processes,” Acutomatica, Vol. 14, No. 5, pp. 413-428, September 1978.

    [24] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, No. 6, pp. 789-814, 2000.

    [25] S. J. Qin, T. A. Badgwell, “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, Vol. 11, No. 7, pp. 733-764, July 2003.

    [26] C. Y. Lin, and Y. C. Liu, “Precision Tracking Control and Constraint Handling of Mechatronic Servo Systems Using Model Predictive Control,” IEEE/ASME Transactions on Mechatronics, 2011.

    [27] L. V. D. Broeck, M. Diehl, and J. Servers, “Experimental Validation of Time Op-timal MPC on a Linear Drive System,” The 11th IEEE International Workshop on Advanced Motion Control, Nagaoka, Japan, March 21-24, 2010, pp. 355-360.

    [28] M. K. Samal, M. Garratt, H. Pota, and H. T. Sangani, “Model Predictive Attitude Control of Vario Unmanned Helicopter,” IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, Australia, November 7-10, 2011, pp. 622-627.

    [29] I. Maurovic, M. Baotic, and I. Petrovic, “Explicit Model Predictive Control for Trajectory Tracking with Mobile Robots,” 2011 IEEE/ASME International Confe-rence on Advanced Intelligent Mechatronics, AIM2011, Budapest, Hungary, July 3-7, 2011, pp. 712-717.

    [30] W. Yim, “Modified Nonlinear Predictive Control of Elastic Manipulators,” Pro-ceedings of the 1996 IEEE International Conference on Robotics and Automation, Vol. 3, Minneapolis, Minnesota, April 22-28, 1996, pp. 2097-2102.

    [31] K. Zmeu and E. Shipitko, “Predictive Controller Design with Offline Model Learning for Flexible Beam Control,” Proceedings of the 2005 International Con-ference on Physics and Control, Saint Petersburg, Russia, August 24-26, 2005, pp. 345-350.

    [32] M. Hassan, R. Dubay, C. Li, and R. Wang, “Active Vibration Control of a Flexi-ble One-Link Manipulator Using a Multivariable Predictive Controller,” Mecha-tronics, Vol. 17, No. 6, pp. 311-323, July 2007.

    [33] P. Boscariol, A. Gasparetto, and V. Zanotto, “Model Predictive Control of a Flexible Links Mechanism,” Journal of Intelligent and Robotic Systems, Vol. 58, No. 2, pp. 125-147, 2010.

    [34] L. Bossi, C. Rottenbacher, G. Mimmi, and L. Magni, “Multivariable Predictive Control for Vibrating Structures: An Application,” Control Engineering Practice, Vol. 19, No. 10, pp. 1087-1098, October 2011.

    [35] R. K. Mehra, J. N. Amin, K. J. Hedrick, C. Osorio, and S. Gopalasamy, “Active Suspension Using Preview Information and Model Predictive Control,” Proceed-ings of the 1997 IEEE International Conference on Control Applications, Hartford, USA, October 5-7, 1997, pp. 860-865.

    [36] J. J. Kok, J. G. A. M. van Heck, R. G. M. Huisman, J. H. E. A. Muijderman, and F. E. Veldpaus, “Active and Semi-Active Control of Suspension Systems for Commercial Vehicles Based on Preview,” Proceedings of the American Control Conference Albuquerque, Vol. 5, New Mexico, USA, June 4-6, 1997, pp. 860-865.

    [37] K. Huang, F. Yu, and Y. C. Zhang, “Model Predictive Controller Design for a Developed Electromagnetic Suspension Actuator Based on Experimental Data,” 2010 WASE International Conference on Information Engineering, Vol. 4, Los Alamitos, USA, August 14-15, 2010, pp. 152-156.

    [38] M. R. Bai and K. Y. Ou, “Experimental Evaluation of Adaptive Predictive Con-trol for Rotor Vibration Suppression,” IEEE Transactions on Control Systems Technology, Vol. 10, No. 6, pp. 895-901, November 2002.

    [39] P. Shi and B. Liu, “Torsional Vibration Suppression of Drive System Based on DMC Method,” Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, June 25-27, 2008, pp. 4789-4792.

    [40] M. T. Cychowski and K. Szabat, “Efficient Real-Time Model Predictive Control of the Drive System With Elastic Transmission,” IET Control Theory Applications, Vol. 4, No. 1, pp. 37-49, January 2010.

    [41] “機器人,” http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100915/pr20
    100915.html

    [42] “汽車懸吊系統,” http://test.autonet.com.tw/cgi-bin/file_view.cgi?a9060117M
    3002

    [43] “車床,” http://cens.com/censv1/en/pic.jsp?img=/cens/supplier/1590/product/
    84744/BIG.jpg?xxx=1333361741587

    [44] T. Bailey and J. E. Hubbard, “Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam,” Journal of Guidance, Control, and Dynamics, Vol. 8, No. 5, pp. 605-611, 1985.

    [45] A. Baz and S. Poh, “Performance of an Active Control System with Piezoelectric Actuators,” Journal of Sound and Vibration, Vol. 126, No. 2, pp. 327-343, October 1988.

    [46] A. Baz, K. Iman, and J. McCoy, “Active Vibration Control of Flexible Beams Using Shape Memory Actuators,” Journal of Sound and Vibration, Vol. 140, No. 3, pp. 437-456, August 8, 1990.

    [47] A. Preumont, Vibration Control of Active Structures, Kluwer Academic Publishers, Dordrecht, Netherlands, 1997.

    [48] B. Kim and G. N. Washington, “Active Vibration Control of a Cantilevered Beam Using Model Predictive Sliding Mode Control,” 49th AIAA Structures, Structural Dynamics, and Materials Conference, Schaumburg, USA, April 7-10, 2008, pp. 2008-2038.

    [49] J. Richelot, J. Bordeneuve-Guibe, and V. Pommier-Budinger, “Active Control of a Clamped Beam Equipped with Piezoelectric Actuator and Sensor Using Genera-lized Predictive Control,” 2004 IEEE International Symposium on Industrial Elec-tronics, Vol. 1, Ajaccio, France, May 4-7, 2004, pp. 583-588.

    [50] A. Wills, D. Bates, A. Fleming, B. Ninness, and R. Moheimani, “Application of MPC to an Active Structure Using Sampling Rates Up to 25kHz,” Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, December 12-15, 2005, pp. 3176-3181.

    [51] A. G. Wills, D. Bates, A. J. Fleming, B. Ninness, and S. O. R. Moheimani, “Model Predictive Control Applied to Constraint Handling in Active Noise and Vi-bration Control,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 1, pp. 3-12, January 2008.

    [52] G. Takacs and B. Rohal’-Ilkiv, “MPC with Guaranteed Stability and Constraint Feasibility on Flexible Vibrating Active Structures: a Comparative Study,” Pro-ceedings of the IASTED International Conference Control and Applications, CA 2009, Cambridge, UK, July 13-15, 2009, pp.278-285.

    [53] G. Takacs and B. Rohal’-Ilkiv, “Newton-Raphson MPC Controlled Active Vibra-tion Attenuation,” Proceedings of the 28th IASTED International Conference Mod-elling, Identification, and Control, MIC 2009, Innsbruck, Austria, February 16-18, 2009, pp.162-168.

    [54] G. V. D. Veen, J.-W. V. Wingerden, and M. Verhaegen, “Subspace Predictive Vi-bration Control of Flexible Structures,” Submitted to the 2011 Conference on Deci-sion and Control, Orlando, USA, 2011.

    [55] A. Wills, A. Mills, and B. Ninness, “FPGA Implementation of an Interior-Point Solution for Linear Model Predictive Control,” Preprints of the 18th IFAC World Congress, Milano, Italy, August 28 – September 2, 2011, pp. 14527-14532.

    [56] A. G. Wills, G. Knagge, and B. Ninness, “Fast Linear Model Predictive Control Via Custom Integrated Circuit Architecture,” IEEE Transactions on Control Sys-tems Technology, Vol. 20, No. 1, January 2012.

    [57] J. Hu, D. Zhu, and Q. Chen, “Vibration Control of a Flexible Beam Using Model Predictive Control,” Advanced Materials Research, Vol. 457-458, pp. 1299-1304, January, 2012.

    [58] 劉燕忠, “模型預測控制於精密機電伺服系統之應用,” 國立台灣科技大學機械工程研究所碩士論文, 2010.

    [59] 葉信佑, “模型預測控制於機電系統之設計與實作,” 國立台灣科技大學機械工程研究所碩士論文, 2011.

    [60] Y. Pan and J. Wang, “Two Neural Network Approaches to Model Predictive Con-trol,” 2008 American Control Conference, Seattle, USA, June 11-13, 2008, pp. 1685-1690.

    [61] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, Chichester and New York, 1987.

    [62] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, Society for Industrial and Applied Mathematics, Philadelphia, 1994.

    [63] C. Roos, T. Terlaky, and J. P. Vial, Theory and Algorithms for Linear Optimization: An Interior Point Approach, John Wiley & Sons, Chichester and New York, 1997.

    [64] S. J. Wright, Primal-Dual Interior-Point Methods, Society for Industrial and Ap-plied Mathematics, Philadelphia, 1997.

    [65] C. Hildreth, A Quadratic Programming Procedure, Naval Research Logistics Quarterly, Vol. 4, No. 1, pp. 79-85, March 1957.

    [66] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer-Verlag, London Limited, 2009.

    [67] A. Bouzerdoum and T. R. Pattison, “Neural Network for Quadratic Optimization with Bound Constraints,” IEEE Transactions on Neural Networks, Vol. 4, No. 2, pp. 293-304, March 1993.

    [68] Y. Xia, “A New Neural Network for Solving Linear and Quadratic Programming Problems,” IEEE Transactions on Neural Networks, Vol. 7, No. 6, pp. 1544-1548, November 1996.

    [69] Y. Pan and J. Wang, “Robust Model Predictive Control Using a Discrete-Time Recurrent Neural Network,” Advances in Neural Networks-ISNN 2008, Sprin-ger-Verlag, Vol. 5263, pp. 883-892, 2008.

    [70] Y. Pan and J. Wang, “Nonlinear Model Predictive Control Using a Recurrent Neural Network,” 2008 International Joint Conference on Neural Networks, (IJCNN 2008), Hong Kong, China, June 1-8, 2008, pp. 2296-2301.

    [71] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley, Reading, MA, 1994.

    [72] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Transactions ASME, Journal of Basic Engineering, Vol. 82, pp. 35-45, 1960.

    [73] M. Tomizuka, T. C. Tsao, and K. K. Chew, “Analysis and Synthesis of Dis-crete-Time Repetitive Controllers,” Journal of Dynamic Systems, Measurement and Control, Vol. 111, pp. 353-358, 1989.

    [74] M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital Control,” Journal of Dynamic Systems, Measurement and Control, Vol. 109, No. 65, pp. 65-68, March 1987.

    [75] H. Chen and F. Allgower, “A Quasi-Infinite Horizon Nonlinear Model Predictive control Scheme with Guaranteed Stability,” Automatica, Vol. 34, No. 10, pp. 1205-1217, 1998.

    [76] C. Y. Lin, and C. M. Chang, “Hybrid Proportional Derivative/Repetitive Control for Active Vibration Control of Smart Piezoelectric Structures,” Journal of Vibra-tion and Control, Mar. 2012.

    [77] 張志銘, “混合式智能控制於壓電樑之主動式抑振研究,” 國立台灣科技大學機械工程研究所碩士論文, 2011.

    [78] L. Ljung, System Identification Toolbox for Use with MATLAB, The Math Works, 2007.

    [79] Y. Pan and J. Wang, “Model Predictive Control for Nonlinear Affine Systems Based on the Simplified Dual Neural Network,” 2009 IEEE International Sympo-sium on Intelligent Control Part of 2009 IEEE Multi-conference on Systems and Control, Saint Petersburg, Russia, July 8-10, 2009, pp. 683-688.

    [80] Y. Pan and J. Wang, “A Neurodynamic Optimization Approach to Nonlinear Model Predictive Control,” Proceedings of the 2010 IEEE International Conference on Systems, Man, and Cybernetics, Istanbul, Turkey, October 10-13, 2010, pp. 1597-1602.

    [81] Z. Yan and J. Wang, “Model Predictive Control of Nonlinear Affine Systems Based on the General Projection Neural Network and Its Application to a Conti-nuous Stirred Tank Reactor,” International Conference on Information Science and Technology, Nanjing, China, March 26-28, 2011, pp. 1011-1015.

    [82] Y. Pan and J. Wang, “Model Predictive Control of Unknown Nonlinear Dynami-cal Systems Based on Recurrent Neural Networks,” IEEE Transactions on Indus-trial Electronics, Vol. 59, No. 8, pp. 3089-3101, August 2012.

    [83] 鄭永彬, “大型撓性結構系統之測試平台建置與控制,” 清雲科技大學機械工程研究所碩士論文, 2011.

    [84] A. A. El-Badawy and A. H. Nayfeh, “Control of a Directly Excited Structural Dynamic Model of an F-15 Tail Section,” Journal of the Franklin Institute, Vol. 338, No. 2-3, pp. 133-147, March 2001.

    [85] P. Arcara, S. Bittanti, and M. Lovera, “Active Control of Vibrations in Helicop-ters by Periodic Optimal Control,” Proceedings of the 1997 IEEE Control Applica-tions, Hartford, USA, October 5-7, 1997, pp. 730-735.

    [86] S. Bittanti and F. A. Cuzzola, “Periodic Active Control of Vibrations in Helicop-ters: A Gain Scheduled Multi-Objective Approach,” Control Engineering Practice, Vol. 10, No. 10, pp. 1043-1057, October 2002.

    無法下載圖示 全文公開日期 2017/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE