簡易檢索 / 詳目顯示

研究生: 鄭偉呈
Wei-Cheng Zheng
論文名稱: 基於類神經網路之鋰離子電池健康狀態估測技術研究
Research on State of Health Estimation for Lithium-ion Batteries using Artificial Neural Network
指導教授: 羅一峰
Yi-Feng Luo
劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
楊宗振
Zong-Zhen Yang
鄭于珊
Yu Shan Cheng
劉益華
Yi-Hua Liu
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 鋰離子電池電池健康狀態電池管理系統電池殘餘容量交流阻抗類神經網路演算法
外文關鍵詞: Li-ion Battery, State of Health (SOH), Battery Management System (BMS), State of Charge (SOC), AC Impedance, Neural Network Algorithm
相關次數: 點閱:448下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池現今已被大量運用在可攜式電子產品、電動機車、電動汽車及儲能系統中,而不管運用在任何產品上,鋰離子電池的安全性則是首要目標,準確估測電池的健康狀態則是電池管理系統重要的技術之一。而鋰電池老化是一非線性的衰減過程,且鋰電池很容易受到環境溫度、充放電電流大小及電池溫升等因素所影響,若無法在完全的充放電狀態下,很難在即時系統上估測出電池的健康狀態。
    因此本文提出一主動式電池健康狀態之估測方法,當電池殘餘容量為100%時,主動偵測鋰電池各頻率交流阻抗,並利用類神經網路演算法估測出電池健康狀態。本文使用Arbin Instruments LBT21084進行電池老化實驗,並搭配Bio-Logic VSP恆電位儀進行交流阻抗量測,以及使用MATLAB提供之類神經網路軟體介面進行訓練。
    根據使用不同老化電池進行的測試結果,本文所提出的第一種類神經網路,輸入參數為23個頻率點之交流阻抗,隱藏層神經元20個,所估測的電池健康狀態之最大誤差為2.03%,最小誤差為0%,平均相對誤差為0.60%,平均絕對誤差為0.51%,均方誤差為0.46%。本文所提出的第二種類神經網路,輸入參數為10個頻率點之交流阻抗,採用10個隱藏層神經元,估測結果之之最大誤差為1.31%,最小誤差為0%,平均相對誤差為0.41%,平均絕對誤差為0.35%,均方誤差為0.21%。因此本文所提出之方法,可有效的被用來估算鋰離子電池的健康狀態。


    Nowadays, Li-ion battery has been widely used in portable electronics, electric scooter (ES), electric vehicle (EV), and energy storage system (ESS). No matter which product is applied to, the primary goal is the safety of Li-ion battery; accurately estimating the state of health (SOH) is an essential technique in the battery management system (BMS). Furthermore, the Li-ion battery degradation is a non-linear decay process. Li-ion battery is subject to environmental temperature, current of charging and discharging, as well as the battery temperature rise. It is not easy to estimate SOH in real-time systems without a fully charged or discharged state.
    Therefore, this study proposed an active SOH estimation method. When the State of Charge (SOC) is 100%, the AC Impedance of the Li-ion battery at each frequency will be detected actively; besides, the neural network algorithm will be utilized to estimate the SOH. This study adopted Arbin Instruments LBT21084 for battery degradation experiments and used Bio-Logic VSP potentiostat for AC impedance measurement. Also, the neural network software interfaces provided by MATLAB were employed for training.
    According to the test results using different aging batteries, the first type of neural network proposed in this study, the input parameters are AC impedance at 23 frequency points and 20 hidden layer neurons. The maximum error of the estimated SOH is 2.03%; minimum error is 0%; mean relative error (MRE) is 0.60%; average absolute error (MAE) is 0.51%, and mean square error (MSE) is 0.46%. In this study’s second type of neural network, the input parameters are AC impedance at 10 frequency points and 10 hidden layer neurons. The maximum error of the estimation results is 1.31%; the minimum error is 0%; the mean relative error (MRE) is 0.41%; the average absolute error (MAE) is 0.35%, and the mean square error (MSE) is 0.21%. As a result, the method proposed in this study can be effectively used to estimate the SOH of Li-ion batteries.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.3 研究動機與目標 3 1.4 論文大綱 4 第二章 鋰離子電池與健康狀態 6 2.1 鋰離子電池構造及化學反應 6 2.2 鋰離子電池種類及名詞介紹 8 2.3 鋰離子電池健康狀態估測方法 13 2.3.1 鋰離子電池健康狀態估測介紹 13 2.3.2 線性插值法(Linear Interpolation) 18 第三章 交流阻抗分析 21 3.1 交流阻抗分析概要 21 3.1.1 交流阻抗分析之介紹 21 3.1.2 交流阻抗分析之系統架構 22 3.1.3 交流阻抗分析之恆電位偵測 23 3.2 個別效應描述 26 第四章 電池老化實驗 30 4.1 電池老化實驗 30 4.1.1 電池篩選 30 4.1.2 電池老化實驗 35 4.2 老化狀態之奈氏圖與波德圖分析 39 第五章 類神經網路 55 5.1 類神經網路基本概念 55 5.1.1 類神經網路架構分類 57 5.1.2 倒傳遞類神經網路說明 59 5.2 類神經網路訓練 63 5.2.1 建立訓練資料庫 63 5.2.2 建立倒傳遞類神經網路模型 68 5.2.2.1 倒傳遞類神經網路架構 68 5.2.2.2 MATLAB神經網路GUI介面介紹 71 5.2.3 訓練倒傳遞類神經網路 74 5.2.4 驗證倒傳遞類神經網路 75 第六章 實驗結果及數據 77 6.1 類神經網路驗證 77 6.1.1 第一組類神經網路驗證 77 6.1.2 第二組類神經網路驗證 81 6.2 線性插值法驗證 84 6.3 結果與討論 87 第七章 結論與未來展望 90 7.1 結論 90 7.2 未來研究方向 91 參考文獻 93

    [1] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, Sh. Santhanagopalan, and V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” Proceedings of the IEEE, vol. 102, June 2014.
    [2] M. E. Lakkis, O. Sename, M. Corno, and D. B. Pietri, “Combined Battery SOC/SOH Estimation using a Nonlinear Adaptive Observer,” European Control Conference (ECC), 15-17 July 2015.
    [3] 陳敏睿,「汰換之電動車電池再利用之直流微電網運轉」,中山大學電機工程研究所學位論文,民國102年9月。
    [4] 梁翊民,「磷酸鋰鐵電池之線上健康狀態估測」,國立中山大學電機工程系碩士論文,民國105年7月。
    [5] 李家瑩,「發展以馬氏距離為基的線上估計模式於電動車電池健康狀態的評估」,明志科技大學工業工程與管理系碩士班論文,民國108年1月。
    [6] Y. Jiang, J. Zhang, L. Xia, and Y. Liu, “State of Health Estimation for Lithium-Ion Battery using Empirical Degradation and Error Compensation Models,” Digital Object Identifier, 2020.
    [7] R. Xiong, L. Li, and J. Tian, “Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring Methods,” Journal of Power Sources, vol. 405, pp.18-29, 2018.
    [8] M. H. Hung , C. H. Lin , L. C. Lee , and C. M. Wang, “State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Dynamic Impedance Technique,” Journal of Power Sources, 2014.
    [9] L. Lavigne , J. Sabatier, J. Mbala Francisco, F. Guillemard , A. Noury, and C. C. Sun, “Lithium-Ion Open Circuit Voltage (OCV) Curve Modelling and Its Ageing Adjustment,” Journal of Power Sources, 2016.
    [10] D. Liu; X. Yin, Y. Song, W. Liu, and Y. Peng, “ An On-line State of Health Estimation of Lithium-Ion Battery using Unscented Particle Filter,” Advanced Energy Storage Technologies and Their Applications, 2018.
    [11] D. I. Stroe, and E. Schaltz, “Lithium-Ion Battery State-of-Health Estimation using the Incremental Capacity Analysis Technique,” IEEE Transactions on Industry Applications, 2020.
    [12] X. Xu, C. Yu, S. Tang, X. Sun, X. Si, and L. Wu, “State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process with Modeling the Relaxation Effect,” Advances in Prognostics and System Health Management, 2019.
    [13] Y. Zhou, M. Huang, and M. Pecht, “An Online State of Health Estimation Method for Lithium-Ion Batteries Based on Integrated Voltage,” IEEE International Conference on Prognostics and Health Management (ICPHM), 2018.
    [14] N. Yang, J. Feng, Q. Sun, T. Liu, and D. Zhong, “Online Estimation of State-of-Health for Lithium-Ion Batteries Based on Charge Curves,” International Conference on Reliability, Maintainability and Safety (ICRMS), 2016.
    [15] R. Xiong, Y. Zhang, J. Wang, H. He, S. Peng, and M. Pecht, “Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System used in Electric Vehicles,” IEEE Transactions on Vehicular Technology, 2018.
    [16] S. Tong, M. P. Klein, and J. W. Park, “On-line Optimization of Battery Open Circuit Voltage for Improved State-of-Charge and State-of-Health Estimation,” Journal of Power Sources, 2015.
    [17] 朱順益,「鋰電池快速充電波形設計」,義守大學電機工程研究所論文,2004年6月。
    [18] 陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,2004年第62卷第4期。
    [19] 陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,台灣科技大學電機工程系碩士學位論文,2014年2月。
    [20] 林世彬,「鋰離子二次電池陰極材料LiNiO2之合成及其性質」,成功大學材料科學及工程學系博士論文,2002年6月。
    [21] 陳欣佑,「鋰三元電池組之SOC估測方法研發」,明志科技大學電機工程系碩士論文,2018年7月。
    [22] 王昱盛,「製備與鑑定鋰離子電池正極材料磷酸鐵鋰之近期發展」,嘉義大學應用化學系碩士論文,2020年7月。
    [23] 黃俊傑,「鉛酸電池交流阻抗量測技術之研究」,高雄應用科技大學電機工程系碩士論文,2008年7月。
    [24] Y. Zhang, and C. Y. Wang, “Cycle Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode,” Journal of Electrochem, vol.156, 2009.
    [25] M. Galeotti, L. Cinà, C. Giammanco, S. Cordiner, and A. D. Carlo, “Performance Analysis and SOH (State of Health) Evaluation of Lithium Polymer Batteries through Electrochemical Impedance Spectroscopy,” Journal of Energy, vol.89, pp.678-686, 2015.
    [26] M. Dubarry, and B.Y. Liaw, “ Identify Capacity Fading Mechanism in a Commercial LiFePO4 Cell,” Journal of Power Sources, vol. 194, pp.541-549, 2009.
    [27] M. Dubarry, B. Y. Liaw, M. S. Chen, S. S. Chyan, K. C. Han, and W. T. Sie, “Identifying Battery Aging Mechanisms in Large Format Li-Ion Cells,” Journal of Power Sources,vol. 196, pp.3420-3425, 2011.
    [28] B. Sood, M. Osterman, and M. Pecht, “Health Monitoring of Lithium-Ion Batteries,” 10th Annual IEEE Symposium on Product Compliance Engineering (ISPCE), pp. 35-40, 2013.
    [29] X. Bian, L. Liu, Ji. Yan, Z. Zou, and R. Zhao, “An Open Circuit Voltage-Based Model for State-of-Health Estimation of Lithium-Ion Batteries: Model Development and Validation,” Journal of Power Sources, vol. 448, pp.7-9, 2020.
    [30] D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth, and D.U. Sauer, “Characterization of High-power Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy. II: Modelling,” Journal of Power Sources, vol.196, pp.5349-5356, 2011.
    [31] Z. Chen, and Q. Wang, “The Application of UKF Algorithm for 18650-type Lithium Battery SOH Estimation,” Applied Mechanics and Materials, vol.519-520 , pp.1079-1084, 2014.
    [32] 李立綱,「利用類神經網路與自適應擴展式卡爾曼濾波器於鋰離子電池之殘電量與健康狀態估測方法」,大同大學電機工程研究所碩士論文,2019年7月。
    [33] R. Xiong, Q.Q. Yu, L.Y. Wang, and C. Lin, “A Novel Method to Obtain the Open Circuit Voltage for The State of Charge of Lithium-Ion Batteries in Electric Vehicles by using H Infinity Filter,” Applied Energy, vol.207, pp.346-353, 2017.
    [34] A. Eddahech, O. Briat, N. Bertrand, J.Y. Delétage, and J.M. Vinassa, “Behavior and State-of-Health Monitoring of Li-Ion Batteries using Impedance Spectroscopy and Recurrent Neural Networks,” Journal of Electr. Power Energy Syst., vol.42, pp.487-494, 2012.
    [35] G. Bai, P. Wang, C. Hu, and M. Pecht, “A Generic Model-Free Approach for Lithium-Ion Battery Health Management,” Applied Energy, vol.135, pp.247-260, 2014.
    [36] Y. G. won, S. Park, and D. Oh, “Real-time State-of-Health Estimation for Electric Vehicle Batteries: a Data-Driven Approach,” Applied Energy, vol.176 , pp.92-103, 2016.
    [37] 線性內插與雙線性內插(2018年11月3日)。檢自https://www.itread01.com/content/1541208123.html (Jun. 6th ,2021)
    [38] 朱明彥,「研發具有SOC校正點之庫倫積分法應用於磷酸鋰鐵電池組容量估測」,明志科技大學電機工程系碩士論文,2018年1月。
    [39] Battpedia(2019年8月)。電池EIS測試、暫態分析對於快速SOH量測之影響」。檢自https://battpedia.com/battery/ (Jun. 6th ,2021)。
    [40] V. Pop, H. J. Bergveld, D. Danilov, P. P. L. Regtien, and P. H. L. Notten (2008). Battery Management Systems_Accurate State-of-Charge Indication for Battery-Powered Applications(pp.87), Springer: Philips Research Book Series.
    [41] G. Nagasubramanian, E. P. Roth, and D. Ingersoll, “Electrical and Electrochemical Performance Characteristics of Small Commercial Li-Ion Cells,” Battery Conference on Applications and Advances, pp. 91-96, 1999.
    [42] 朱翊禎,「深共熔離子液體與有機電解質於電雙層電容器與染料敏化太陽能電池之應用」,清華大學化學工程研究所碩士論文,100年6月。
    [43] 陳燕虹,「電動汽車鋰離子動力電池分類方法研究」,湖南大學學報自然科學版,頁23-31,2016年11月。
    [44] S. K. Heiskanen, J. Kim, and B. L. Lucht, “Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries,” Joule, vol. 3, Issue 10, pp. 2322-2333, Oct. 16th, 2019.
    [45] 李國勇、楊麗娟,「神經、模糊、預測控制及其它MATLAB實現(第四版)」,電子工業出版,2018年11月。
    [46] S. V. Puranik, A. Keyhani, F. Khorrami, W. H. Jung, and S. H. Kim, “Neural Network Modeling of Proton Exchange Membrane Fuel Cell,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 474-483, Jun. 2010.
    [47] O. S. Ebrahim, M. A. Badr, A. S. Elgendy, and P. K. Jain, “ANN-Based Optimal Energy Control of Induction Motor Drive in Pumping Applications,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 652-660, Sep. 2010.
    [48] 王進德、蕭大全,「類神經網路與模糊控制理論入門」,全華科技圖書出版,2007年1月。
    [49] A. Hussein, “Adaptive Artificial Neural Network-Based Models for Instantaneous Power Estimation Enhancement Electric Vehicles’ Li-Ion Batteries,” IEEE Trans. Industry Applications., vol. 55, no. 1, pp. 840-847, Jan. 2019.
    [50] A. Hussein, “Capacity Fade Estimation in Electric Vehicle Li-Ion Batteries using Artificial Neural Network,” IEEE Trans. Industry Applications., vol. 51, no. 3, pp. 2321-2328, May/Jun. 2015.
    [51] M. M. Gupta, L. Jin, and N. Homma, “Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory,” Wiley-IEEE Press, 2003.
    [52] 黃嘉偉,「適用於快速變動環境之太陽能最大功率追蹤技術研究」,台灣科技大學電機工程博士論文,2012年7月。

    無法下載圖示 全文公開日期 2024/08/09 (校內網路)
    全文公開日期 2026/08/09 (校外網路)
    全文公開日期 2026/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE