簡易檢索 / 詳目顯示

研究生: 廖翊安
Yi-An Liao
論文名稱: 二硫化鉬層狀半導體之p型摻雜與表面鈍化研究
Investigation of p-type Doping and Surface Passivation on MoS2 Layered Semiconductors
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
溫偉源
Wei-Yen Woon
鄭澄懋
Cheng-Maw Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 二硫化鉬離子佈植p型摻雜表面鈍化
外文關鍵詞: MoS2, Ion implantation, p-type Doping, Surface passivation
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討二硫化鉬(MoS2) 層狀半導體單晶之p型摻雜與表面鈍化製作。實驗上以離子佈植(ion implantation)方式,將具有表面電子聚集的原始表面之二硫化鉬 (簡稱non-fresh MoS2),以及移除電子聚集層的新鮮表面之二硫化鉬(簡稱fresh MoS2)植入磷離子。經由掃描穿隧式顯微鏡(scanning tunneling microscope, STM)分析晶體表面的電子結構,結果顯示磷離子摻雜能有效地將MoS2的表面電子聚集與多數載子進行補償,形成弱p型。進一步地改變磷離子的摻雜劑量來製作同質p-n接面二極體,但可能由於摻雜劑量的不足,使得在電性上無法觀察到二極體的整流曲線。另外,在表面鈍化方面,為了降低表面的高電子濃度,將non-fresh MoS2置於氧氣環境,利用快速熱退火(rapid thermal annealing, RTA)進行高溫熱處理,並以電導率的變化來探討溫度與時間對MoS2表面鈍化的效益。研究顯示在300℃進行30分鐘的最佳熱處理時,MoS2表面的硫空缺似乎能被氧分子所填補,使non-fresh MoS2的電導率可大幅減少。另外,研究也發現若持續增加熱處理溫度與時間,氧對MoS2的影響可能由鈍化效應轉向摻雜作用,造成電導率有回升的情形。


We investigated the p-type doping and surface passivation of molybdenum disulfide (MoS2) layered semiconductors. Phosphorus ions were implanted into the MoS2 with the non-fresh surface possessing surface electron accumulation (SEA) and the fresh surface without SEA. The electronic structure of the crystal surface was analyzed by scanning tunneling microscopy (STM). The result shows that the doping of phosphorus ions can effectively compensate the SEA to form a weak p-type MoS2. The homogeneous p-n junction diodes were fabricated, but the rectification behavior was not observed. Additionally, surface passivation by thermal treatment in oxygen ambience was conducted to reduce the high electron concentration of the non-fresh MoS2 surface. The effects of annealing temperature and dwell time on the electrical conductivity were investigated. The result shows that the sulfur vacancies in the surface of MoS2 are likely to be filled by oxygen molecules at the optimal dwell time of 30 minutes and temperature at 300 °C.

中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1 過渡性金屬硫屬化合物(Transition Metal Dichalcogenide, TMD) 1 1.2 表面電子聚集效應(Surface Electron Accumulation, SEA) 2 第二章 實驗方法 5 2.1 二硫化鉬(MoS2)單晶介紹 5 2.2 二硫化鉬層狀半導體結構特性檢測 6 2.2.1 X光繞射儀 (X-ray Diffractometer, XRD) 6 2.2.2 拉曼散射光譜儀 (Raman scattering spectroscopy) 9 2.2.3 原子力顯微鏡 (Atomic Force Microscopy, AFM) 11 2.2.4 掃描穿隧式電子顯微鏡(Scanning Tunneling Microscope, STM) 14 2.3 二硫化鉬p型摻雜 17 2.3.1 機械式剝離法 (Mechanical Exfoliation) 17 2.3.2 離子佈植 (Ion Implantation) 19 2.3.4 快速熱退火(Rapid Thermal Annealing, RTA) 21 2.4 二硫化鉬元件之電極製作 23 2.4.1 直流磁控濺鍍 (DC Magnetron Sputter) 23 2.4.2 AFM定義濺鍍薄膜厚度 26 2.5 二硫化鉬元件之電性量測 28 2.5.1 電流對電壓曲線量測(Current-voltage Measurement) 28 第三章 結果與討論 30 3.1 二硫化鉬單晶結構分析 30 3.2 以離子佈植進行二硫化鉬p型摻雜 33 3.2.1 SRIM模擬 33 3.2.2 二硫化鉬之p型摻雜與p-n二極體製作 36 3.3 二硫化鉬p型摻雜後之結構特性與元件電性 41 3.3.1 拉曼光譜分析 41 3.3.2 二硫化鉬p-n二極體之電性分析 45 3.3.3 STM之掃描穿隧能譜分析 50 3.5 二硫化鉬之表面鈍化研究 65 3.5.1 二硫化鉬經表面鈍化後之元件製作 65 3.5.2 二硫化鉬表面鈍化之電性分析 67 第四章 結論 76 參考文獻 78

[1] Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K. Two-Dimensional Atomic Crystals. PNAS. 102, 10451-10453 (2005).
[2] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science. 306, 666-669 (2004).
[3] Geim, A. K., Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183 (2007).
[4] Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H. L.Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).
[5] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M.I., Grigorieva, I. V., Dubonos,S. V., Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197 (2005).
[6] Zhang, Y., Tan, Y. W., Stormer, H. L., Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 438, 201 (2005).
[7] Wilson, J. A., Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of theobserved optical, electrical and structural properties. Adv. Phys. 18, 193 (1969).
[8] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).
[9] Ataca, C., Sahin, H., Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C. 116, 8983 (2012).
[10] Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
[11] Splendiani, A., Sun, L., Zhang, Y. B., Li, T. S., Kim, J., Chim, C. Y., Galli, G., Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271 (2010).
[12] Roy, K., Padmanabhan, M., Goswami, S., Sai, T. P., Ramalingam, G., Raghavan, S., and Ghosh, A. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826 (2013).
[13] Zhang, W., Chuu, C. P., Huang, J. K., Chen, C. H., Tsai, M. L., Chang, Y. H., and Chou, M. Y. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep. 4, 3826. (2014).
[14] Min, S., and Lu, G. Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets―the role of graphene. J. Phys. Chem. C., 116, 25415-25424 (2012).
[15] Xiang, Q., Yu, J., and Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575 (2012).
[16] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I. V., and Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147 (2011).
[17] Liu, H., Neal, A. T., and Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano. 6, 8563 (2012).
[18] Wu, W., De, D., Chang, S. C., Wang, Y., Peng, H., Bao, J., and Pei, S. S. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys. Lett. 102, 142106 (2013).
[19] Radisavljevic, B., and Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature Mater. 12, 815 (2013).
[20] Liu, C. J., Tai, S. Y., Chou, S. W., Yu, Y. C., Chang, K. D., Wang, S., Chien, F. S., Lin, J. Y., and Lin, T. W. (2012). Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22, 21057 (2012).
[21] Chen, K., Wan, X., Xie, W. G., Wen, J. X., Kang, Z. W., Zeng, X. L., Chen, H. J., Xu, J. B. Lateral Built-In Potential of Monolayer MoS2-WS2 In-Plane Heterostructures by a Shortcut Growth Strategy. Adv. Mater. 27, 6431 (2015).
[22] Mahjouri-Samani, M., Lin, M. W., Wang, K., Lupini, A. R., Lee, J., Basile, L., Boulesbaa, A., Rouleau, C. M., Puretzky, A. A., Ivanov, I. N., Xiao, K., Yoon, M., Geohegan, D. B. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015).
[23] Li, H., Ye, L., Xu, J. High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure. ACS Photonics. 4, 823 (2017).
[24] Lee, G., Pearton, S. J., Ren, F., Kim, J. Two-dimensionally layered p-black phosphorus/n-MoS2/p-black phosphorus Heterojunctions. ACS Appl. Mater. Interfaces. 10, 10347(2018).
[25] Siao, M. D., Shen, W. C., Chen, R. S., Chang, Z. W., Shih, M. C., Chiu, Y. P., & Cheng, C. M. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 9, 1442 (2018).
[26] Zhang, K., Feng, S., Wang, J., Azcatl, A., Lu, N., Addou, R., Wang, N., Zhou, C., Lerach, J., Bojan, V., Kim, M. J., Chen, L.-Q., Wallace, R. M., Terrones, M., Zhu, J., Robinson, J. A. Manganese Doping of Monolayer MoS2: The Substrate is Critical. Nano Lett. 15, 6586−6591 (2015).
[27] Najmaei, S., Zou, X., Er, D., Li, J., Jin, Z., Gao, W., Zhang, Q., Park, S., Ge, L., Lei, S., Kono, J., Shenoy, V. B., Yakobson, B. I., George, A., Ajayan, P. M., Lou, J. Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry. Nano Lett. 14, 1354−1361 (2014).
[28] Mishra, P., Tangi, M., Ng, T. K., Hedhili, M. N., Anjum, D. H., Alias, M. S., Tseng,C.C., Li, L. J., Ooi, B. S. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Appl. Phys. Lett. 110, 012101 (2017).
[29] Nipane, A., Karmakar, D., Kaushik, N., Karande, S., Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS nano. 10, 2128 (2016).
[30] Mouri, S., Miyauchi, Y., Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 13, 5944− 5948 (2013)
[31] Cullity, B. D., Stock, S. R. Elements of X-ray diffraction, Prentice-Hall, Englewood Cliffs, New Jersey (2001).
[32] From Wikipedia, https://en.wikipedia.org/wiki/Raman_spectroscopy
[33] Braet, F., De Zanger, R., and Wisse, E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. Journal of microscopy. 186, 84 (1997).
[34] From Wikipedia, http://en .wikipedia.org/wiki/Scanning_tunneling_microscope
[35] Hansma, P. K., and Tersoff, J. Scanning tunneling microscopy. J. Appl. Phys. 61, R1-R24 (1987).
[36] Chang, Y. M., Kim, H., Lee, J. H.,and Song, Y. W. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett. 97, 211102 (2010).
[37] From Condensed Matter Physics Laboratory, National Central University, https://www.phy.ncu.edu.tw/~CondensedLab/ion.html
[38] Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A.,and Baillargeat, D. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385 (2012).
[39] Peelaers, H., and de WalleVan C.G. Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B86, 241401 (2012).
[40] Lu, C. P., Li, G., Mao, J., Wang, L. M. and Andrei, E. Y. Bandgap, mid-Gap states, and gating effects in MoS2. Nano Lett.14, 4628–4633 (2014).
[41] From Wikipedia, https://en.wikipedia.org/wiki/Ionic_radius
[42] Namgung, S. D., Yang, S., Park, K., Cho, A. J., Kim, H.,and Kwon, J. Y. Influence of post-annealing on the off current of MoS2 field-effect transistors. Nanoscale res lett. 10, 62 (2015).
[43] Houssa, M., Dimoulas, A.,and Molle, A. 2D materials for nanoelectronics. CRC Press.150 (2016).
[44] Amani, M., Lien, D. H., Kiriya, D., Xiao, J., Azcatl, A., Noh, J., Madhvapathy, S. R., Addou, R., Kc, S., Dubey, M., Cho, K., Wallace, R. M., Lee, S., He, J., Iii, J. W. A., Zhang, X., Yablonovitch, E., and Javey, A. Near-unity photoluminescence quantum yield in MoS2. Science. 350, 1065 (2015).
[45] Park, J. H., Sanne, A., Guo, Y., Amani, M., Zhang, K., Movva, H. C. P., Robinson , J. A., Javey, A., Robertson, J., and Banerjee, S. K., Kummel, A. C. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661(2017).
[46] Yu, Z., Pan, Y., Shen, Y., Wang, Z., Ong, Z. Y., Xu, T., Xin, R., Pan , L., Wang, B., Sun, L., Wang, J., Zhang, G., Zhang, Y. W., Shi, Y., and Wang, X. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).
[47] Makarova, M., Okawa, Y., and Aono, M. Selective adsorption of thiol molecules at sulfur vacancies on MoS2 (0001), followed by vacancy repair via S–C dissociation. J. Phys. Chem. C 116, 22411 (2012).
[48] Lu, H., Kummel, A., and Robertson, J. Passivating the sulfur vacancy in monolayer MoS2. APL Materials. 6, 066104 (2018).
[49] 王驊民,“二硫化鉬層狀半導體歐姆接觸探討”國立臺灣科技大學光電工程研究所碩士學位論文 (2018).

無法下載圖示 全文公開日期 2024/07/25 (校內網路)
全文公開日期 2024/07/25 (校外網路)
全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE