簡易檢索 / 詳目顯示

研究生: 張肯睿
Ken-Rui Chang
論文名稱: Sb-InSb奈米線製備暨InSb及InSe奈米線電性研究
Fabrication of Sb-InSb Nanowires and Electrical Properties of InSb and InSe Nanowires Study
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 蔡孟霖
Meng-Lin Tsai
葉炳宏
Ping-Hung Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 148
中文關鍵詞: 奈米線金氧半場效電晶體銻化銦硒化銦光電感測器
外文關鍵詞: nanowire, MOSFET, InSb, InSe, photodetector
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文,對半導體奈米材料研究分為三個部分,分別為InSb 奈米線之金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)之性能、對共晶微結構Sb-InSb奈米線之分析以及InSe奈米線光感性能之研究。
第一部分,根據之前的文獻,已有共晶金屬之分節微結構奈米線的出現,而共晶Sb-InSb奈米線可被陽極氧化鋁模板(Anodic aluminum oxide, AAO)模板輔助壓力鑄造法製備也已成功驗證。其可批量性的生產出的大量的分節微結構之Sb-InSb奈米線。檢測後可得知,奈米線中同時存在了菱形(rhombohedral)結構Sb及纖鋅礦(zinc-blende)結構InSb。透過兩者接面的能帶結構圖,可見其存在一內建電場於介面,理論上它可以有效的改善InSb部分的的電子遷移率、加速載子對的分離,使得其作為MOSFET的開關更為迅速、俐落。
第二部分,將InSb塊材透過AAO輔助壓力鑄造法合成InSb奈米線,並將這些奈米線藉由聚焦離子束程序製備為MOSFET元件。這些InSb奈米線元件將在不同的源極及閘極電壓的作用下進行電性質的測量,其結果顯示出了InSb奈米線具有3.27x10-1 cm2 V-1s-1電子遷移率及1.7x10-9 mS的跨導數值。並且在Id-Vg量測中,以AAO模板輔助壓力鑄造法合成的InSb奈米線在相對小的源極偏壓下顯示出了可見的開、關狀態,但內部高密度的電荷陷阱能態使其開啟後就無法關閉。
第三部分,對AAO模板輔助壓力鑄造合成InSe奈米線之光感性能的探討,透過掃描式電子顯微鏡(Scanning Electron Microscope, SEM)、能量色散X射線譜(Energy-dispersive X-ray spectroscopy, EDS)與拉曼光譜分析(Raman Spectra)可以確認所得之InSe奈米線為β相,奈米線的平均長度偏短,約落於1 μm到5 μm之間,而這方面還有待改善。再者,InSe奈米線在全可見光區皆存在光感響應並在,但量測所得之power-law幕次皆顯出接近0.5的數值,意旨InSe能隙中存在暫存能階。然而,InSe奈米線表現出了傑出的光電轉換能力,其響應值(Responsivity)及外部量子效率(External Quantum Efficiency, EQE跟別高達1529.69 A/W及4.692x105 %,顯示AAO模板輔助壓力鑄造合成InSe奈米線有著卓越的光電感測能力。


In this thesis, the investigation of semiconductor nanomaterials can be divide into three parts, the study of microstructure of eutectic Sb-InSb nanowires, the property of InSb nanowires MOSFET device, and the research of the InSe nanowire photodetector.
For the first part, according to the literature, the eutectic microstructure nanowires were achieved by metal eutectic material. In addition, the eutectic Sb-InSb nanowires were successfully manufactured by the Anodic aluminum oxide (AAO) template-assisted die-casting method and it can fabricate such large amount in once die-casting operation. Moreover, the characterization shows that there’s rhombohedral Sb and zinc-blende InSb can co-exist in a nanowire. Furthermore, via the interface band diagram between Sb and InSb, it reveals a built-in electric field. In theory, this built-in electric field can effectively improve the mobility and enhance the carriers separating efficiency, making the switching rapidly and swiftly.
For the second part, the InSb nanowires were manufactured by the AAO template-assisted die-casting method, then the as-prepared InSb nanowires were built into MOSFET device via FIB process. These devices were measured the properties under varied source and gate applied, and the results shows that the InSb nanowires represent as 3.27x10-1 cm2 V-1s-1 electron mobility and 1.7x10-9 mS transconductance. The AAO template-assisted die-casting InSb nanowires reveal a clear on-off states in the Id-Vg measurements. But the high concentration of the trap states in the InSb nanowire makes the device cannot be turned into off-state.
For the third part, the research of the InSe nanowire photodetector, it can verify the InSe nanowires exhibit as β phase via the SEM/EDS and Raman spectra results. But the InSe nanowires reveal that the length of the nanowires is short, about the range of 1 μm to 5 μm. This issue needs to be fixed, urgently. Moreover, the InSe photodetector shows a distinct photoresponse in whole visible light range. The power-law indexes reveal as close to 0.5, indicating there is indeed a meta-state within the InSe bandgap. However, the InSe nanowire exhibits a remarkable photoelectric conversion capability. The responsivity and External Quantum Efficiency (EQE) represent a value high to 1529.69 A/W and 4.692x105 %. This results imply that the AAO template-assisted die-casting InSe nanowires have an extraordinary photosensing capability.

摘要 I Abstract III List of the Abbreviations and Acronyms 1 List of Figure 2 List of Table 7 Chapter 1. Introduction 8 1.1 Nanotechnology and Nanomaterials 8 1.1.1 Two-Dimension Nanostructure 9 1.1.2 One-Dimension Nanostructure 10 1.2 The Structure and Characteristics of InSb 11 1.3 The Structure of Eutectic Sb-InSb 15 1.4 The Structure and Characteristics of InSe 17 1.5 Heterostructures 20 1.6 Flow Chart of Research 21 1.7 Introduction of MOSFET Device 25 1.8 Photodetector 26 Chapter 2. Experimental Procedures 27 2.1 AAO Templates 27 2.2 Manufacture of Heterojunction Sb-InSb Nanowires 30 2.2.1 Prepare Eutectic Sb-InSb Bulks 30 2.2.2 Fabrication of Eutectic Sb-InSb Nanowires 32 2.2.3 AAO Template Removing Procedures 32 2.3 Manufacture of InSb Nanowires 33 2.3.1 Preparation InSb Bulks 33 2.3.2 Fabrication of InSb Nanowires 35 2.3.3 AAO Template Removing Procedures 37 2.3.4 InSb Nanowire Device Fabrication 37 2.3.5 The InSb Nanowires MOSFET Device Measurement 38 2.4 Manufacture of InSe Nanowires 38 2.4.1 Preparation InSe Bulks 40 2.4.2 Fabrication of InSe Nanowires 42 2.4.3 AAO Template Removing Procedure 42 2.4.4 InSe Nanowire Device Fabrication 43 2.4.5 The InSe Nanowire Photodetector Measurement 43 Chapter 3. Result and Discussion 45 3.1 The Investigation of Eutectic Sb-InSb Nanowires 45 3.1.1 The Motivation of Eutectic Sb-InSb 45 3.1.2 Characterization of Eutectic Sb-InSb Nanowires 48 3.1.2.1 The SEM/EDS Results 48 3.1.2.2 The XRD Results 52 3.1.2.3 The Raman Spectra Results 55 3.1.2.4 The TEM Results 58 3.2 The Investigation of InSb Nanowires and Application on MOSFET 62 3.2.1 The Motivation of InSb Nanowires MOSFET 62 3.2.2 Characterization of InSb Nanowries 63 3.2.2.1 The SEM/EDS Results 63 3.2.2.2 The XRD Results 67 3.2.2.3 The Raman Spectra Results 70 3.2.3 The Energy Band Structure of the InSe Nanowires and Pt Electrodes 73 3.2.4 The Performance of InSb Nanowires MOSFET 75 3.3 The Investigation of InSe Nanowires and Application in Photodetector 82 3.3.1 The Motivation of InSe Nanowires Photodetector 82 3.3.2 Characterization of InSe Nanowries 83 3.3.2.1 The SEM/EDS Results 83 3.3.2.2 The XRD Results 87 3.3.2.3 The Raman Spectra Results 89 3.3.3 The Energy Band Structure of the InSe Nanowires and Ni Electrodes 91 3.3.4 The Photodetector Performance of the InSe Nanowires 93 Chapter 4. Summary and Conclusion 114 4.1 The Investigation of the Eutectic Sb-InSb and InSb Nanowires and Its Application 114 4.2 The Exploration of the InSe Nanowires and Its Phtotosening Properties 116 Chapter 5. Future Works 117 5.1 The Future Works of Eutectic Sb-InSb Nanowires 117 5.2 The Future Works of InSb Nanowires MOSFET 117 5.3 The Future Works of InSe Nanowires Photodetector 118 References 119 Appendix 133

[1] Y. Li, H, Wang, L. Xie, Y. Liang, G. Hong, and H. Dia, “MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction”, Journal of the American Chemical Society, 2011, 19, 7296-7299.
[2] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer MoS2”, Nano Letters, 2010, 4, 1271-1275.
[3] P. Yiya, M. Zhaoyu, Z. Chang, L. Jun, Y. Weichao, J. YunBo, and Q. Yitai, “Hydrothermal Snthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2”, Chemistry Letters, 2001, 8, 772-773.
[4] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, Teo, H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering”, Advanced Functional Materials, 2012, 22, 1385-1390.
[5] Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, “High-Rate, Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes”, Science, 1995, 267, 222-225.
[6] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from Chemically Exfoliated MoS2”, Nano Letters, 2011, 12, 5111-5116.
[7] Y. H. Lee, X. Q Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthrsis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition”, Advanced Materials, 2012, 21, 2320-2325.
[8] M. A. Lukowski, A. S. Daniel, F. Meng, S. Forticaux, L. Li, and S. Jin, “Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets”, Journal of the American Chemical Society, 2013, 28, 10274-10277.
[9] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, “Enhancement of the Photocatalytic H2 Evolution on CdS by Loading as Cocatalyst under Visible Light Irradiation”, Journal of the American Chemical Society, 2008, 23, 7176-7177.
[10] L. David, R. Bhandavant, and G. Singh, “MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes”, ACS nano, 2014, 2, 1759-1770.
[11] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2” ACS Nano, 2013, 1, 791-797.
[12] H. R. Gutierrez, N. P. López, A. L. Elias, A. Berkdemir, Bei Wang, R. Lv, F. L. Urias, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers”, Nano Letters, 2013, 8, 3447-3454.
[13] L. Cheng, J. Liu. X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, H. Xing, W. Nu, B. Sun, and Z. Liu, “PEGylated WS2 Nnanosheets as Multifunctional Theranostic Agent for in vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy”, Advanced Materials, 2013, 26, 1886-1893.
[14] M. Nath, A. Govindaraj, C. N. R. Rao, “Simple Synthesis of MoS2 and WS2 Nanotubes”, Advanced Materials, 2001, 13, 283-286.
[15] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary”, ACS Nano, 2013, 10, 8963-8971.
[16] L. Rapoport, N. Fleischer, and R. Tenne, “Fullerene-like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions”, Advanced Materials, 2003, 15, 651-655.
[17] S. Xu, D. Li, and P. Wu, “One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction”, Advanced Functional Materials, 2015, 25, 1127-1136.
[18] W. Ho, J. C. Yu, J. Lin, J. Yu, and P. Li, “Preparation and Photocatalytic Behavior of the MoS2 and WS2 nanocluster Sensitized TiO2”, Langmuir, 2004, 14, 5865-5869.
[19] H. Fang, S. Chuang, K. Takei, T. Takahashi, and A. Javey, “High- Performance Single Layered WSe2 p-FETs with Chemically Doped Contracts”, Nano Letters, 2012, 7, 3788-3792.
[20] H. Li, J. Wu, Z. Yin, and H. Zhang, “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nnaosheets”, Accounts of Chemical Research, 2014, 4, 1067-1075.
[21] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors”, Nano Letters, 2013, 5, 1983-1990.
[22] J. K. Huang, K. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li, “Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications”, ACS Nano, 2014, 1, 923-930.
[23] M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, Jr. H. He, W. H. Chang, K. Suenaga, and L. J. Li, “Epitaxial Growth of a Monolayer WSe2-MoS2 Lateral p-n junction with an Atomically Sharp Interface”, Science, 2015, 349, 524-528.
[24] N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-Infrared Conversion Materials: Gallium Selenide for Far-Infrared Conversion Applications”, Progress in Crystal Growth and Characterization of Materials, 1998, 1, 47-102.
[25] R. H. Bube and E. L. Lind, “Photoconductivity of Gallium Selenide Crystals”, Physical Review Journals Archive, 1959, 115, 1159.
[26] Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, and H. Peng, “Epitaxy and Photoresponse of Two-Dimensional GaSe Crystals on Flexible Transparent Mica Sheets, ACS Nano, 2014, 2, 1485-1490.
[27] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of Few-Layer GaSe Nanosheets for Performance Photodetectors”, ACS Nano, 2012, 7, 5988-5994.
[28] F. Yan, L. Zhao, A. Patanè, P. A. Hu, X. Wei, W. Luo, D. Zhang, Q. Lv, Q. Feng, C. Shen, K. Chang, L. Eaves, and K. Wang, “Far, Multicolor Photodetection with Graphene-Contacted p-GaSe/n-InSe van der Waals Heterostuctures”, Nanotechnology, 2017, 28, 27.
[29] S. R. Tamalampudi, Y. Y. Lu, Rajesh K. U., R. Sankar, C. D. Liao, Karukanara M. B., C. H. Cheng, F. C. Chou, and Y. T. Chen, “High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response”, Nano Letters, 2014, 5, 2800-2806.
[30] Z. Chen, J. Biscaras, and A. Shakla, “A High Performance Graphene/Few-Layer InSe Photo-detector”, Nanoscale, 2015, 7, 5981-5986.
[31] J. J. Wang, F. F. Cao, L. Jiang, Y. G. Guo, W. P Hu, and L. J. Wan, “High Performance Photodetectors of Individual InSe Single Crystalline Nanowire”, Journal of the American Chemical Society, 2009, 43, 15602.
[32] W. Feng, J. B. Wu, X. Li, W. Zheng, X. Zhou, K. Xiao, W. Cao, B. Yang, J. C. Idrobo, L. Basile, W. Tian, P. H. Tan, and P. A. Hu, “Ultrahigh Photo-Responsivity and Detectivity in Multilayer InSe Nnaosheets Phototransistors with Broadband Response”, Journal of Materials Chemistry C, 2015, 3, 7022-7028.
[33] W. Feng, Z. Jin, J. Yuan, J. Zhang, S. Jia, L. Dong, J. Yoon, L. Zhou, R. Vajtai, J. M. Tour, P. M. Ajayan, P. Hu and J. Lou, “A Fast and Zero-Biased Photodetector Based on GaTe-InSe Vertical 2D p-n Heterojunction”, 2D Materials, 5, 2.
[34] A. J. Lehner, H. Wang, D. H. Fabini, C. D. Liman, C. A. Hebert, E. E Perry, M. Wang, G. C. Bazan, M. L. Chabinyc, and R. Seschadri, “Electronic Structure and Photovoltaic Application of BiI3”, Applied Physics Letter, 2015, 107, 131109.
[35] R. E. Brandt, R. C. Kurchin, R. L. Z. Hoye, J. R. Poindexter, M. W. B Wilson, S. Sulekar, F. Lenahan, P. X. T Yen, V. Stevanovic, J. C. Nino, M. G. Bawendi, and T. Buonassisi, “Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications”, The Journal of Physical Chemistry Letters, 2015, 21, 4297-4302.
[36] M. Schluter, M. L. Cohen, S. E. Kohn, and C. Y Fong, “Electronic Structure of BiI3”, Phys. Stat. Sol. (b), 78, 737-747.
[37] L. F. Grantham and S. J. Yosim, “Electrical Conductivities of Molten Bi-BiI3 solutions”, The Journal of Chemical Physics, 2004, 38, 1671.
[38] Y. Kaifu, “Excitons in Layered BiI3 Single Crystals”, Journal of Luminescence, 42, 61-81.
[39] J. Bordas, J. Roberton, and A Jakosson, “Ultraviolet Properties and Band Structure of SnS2, SnSe2, CdI2, PbI2, BiI3, BiOI Crystals”, Journal of Physics C: Solid State Physics, 1978, 11, 2607-2621.
[40] G. E. Jellison, Jr., J. O. Ramey, and L. A. Boatner, “Optical function of BiI3 as measured by generalized Ellipsometry”, Physical Review B, 1998, 59, 9718-9721.
[41] O. P. Kilpi, J. Svensson, J. Wu, A. R. Persson, R. Wallenberg, E. Lind, and L.E. Wernersson, “Vertical InAs/InGaAs Heterostructure Metal−Oxide−Semiconductor Field-Effect Transistors on Si”, Nano Letters, 2017, 17, 6006-6010.
[42] W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorodes Through a Carbon Nanotube-Confined Reaction”, Science, 1997, 277, 1287-1289.
[43] W. J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C. H. Hung and D.L. Huffaker, "High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light", Nano Letters, 2016, 16, 199-204.
[44] Z. L. Wang, “ZnO Nanowires and Nanobelt Platform for Nanothechnology”, Materials Science and Engineering: R: Reports”, 2009, 64, 33-71.
[45] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, “Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities”, Small, 2012, 9, 140-147.
[46] J. Tian, Y. Sang, Z. Zhao, W, Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, “Enhanced Photocatalytic Performances of CeO2/TiO2 Nanobelt Heterostructures”, Small, 2013, 9, 3864-3872.
[47] D. Kriegner, C. Panse, B. Mandl, K. A. Dick, M. Keplinger, J. M. Persson, P. Caroff, L. Sorba, F. Bechstedt, J. Stangl and G. Bauer, "Unit Cell Structure of Crystal Polytypes in InAs and InSb Nanowires", Nano Letters, 2011, 11, 1483-1489.
[48] D. L. Rode, “Electron Transport in InSb, InAs, and InP”, Physical Review B, 1971, 10, 3287.
[49] R. C. Sharma, T. L. Ngai, and Y. A. Chang, “The In-Sb (Indium-Antimony) System” Bulletin of Alloy Phase Diagrams”, 1989, 10, 657-664
[50] Y. Sun, S. Luo, Z. G. Zhao, K. Biswas, S. L. Li, and L. Zhang, “InSe: a Two-Dimensional Material with Strong Interlayer Coupling”, Nanoscale, 2018, 10, 7991-7998.
[51] O. Lang, C. Pettenkofer, J. F. Sánchez-Royo, A. Segura, A. Klein and W. Jaegermann, “Thin film growth and band lineup of In2O3 on the layered semiconductor InSe”, Journal of Applied Physics, 1999, 86, 5687-5691.
[52] S. Lei, F. Wen, L. Ge, S. Najmaei, A. George, Y. Gong, W. Gao, Z. Jin, B. Li, J. Lou, J. Kono, R. Vajtai, P. Ajayan, and N. J. Halas, “An Atomically Layered InSe Avalanche Photodetector”, Nano Letters, 2015, 15, 3048-3055.
[53] C. Julien, I. Samaras, M. Tsakiri, P. Dzonkowski, and M. Balkanski, “Lithium Insertion in In-Se Films and Applications in Microbatteries”, Materials Science and Engineering: B, 1998, 3, 25-29.
[54] M. Balkanski, C. Julien, and M. Jouanne, “Electron and Phonon Aspects in a Lithium Intercalated InSe cathode”, Journal of Power Sources, 1987, 20, 213-219.
[55] C. Julien, and E. Hatzikraniotis, “Electrical Properties of Lithium-Intercalated InSe”, Materials Letters, 1987, 5, 134-139.
[56] W. Seidel, A. Titkov, J, P André, P. Voisin, and M. Voos, “High-Efficiency Energy Up-Conversion by an “Auger Fountain” at an InP-Allnas Type-II Heterojunction”, Physical Review Letters, 1994, 23, 2356.
[57] R. Lu., C. Christianson, A. Kirkeminde, S. Ren, and J. Wu, “Extraordinary Photocurrent Harvesting at Type-II Heterojunciton Interfaces: Toward High Detecticity Carbon Nanotube Infrared Detectors”, Nano Letters, 2012, 12, 6244-6249.
[58] D. C. Cameron, L. D. Irving, C. R. Whitehouse, and J. Woodward, “Planar Self-Aligned Ion-Implanted InP MOSFET”, Electronics Letters, 1982, 18, 534-536.
[59] A. Yamamoto, and C. Uemura, “Anodic Oxide Film as Gate Insulator for InP MOSFET”, Electronics Letters, 1982, 18, 63-64.
[60] J. Mo, E. Lind, and L. E. Wernersson, “Asymmetric InGaAs/InP MOSFETs with Source/drain Engineering”, IEEE Electron Device Letters, 2014, 35, 515-517.
[61] K. S. Im, J. B. Ha, K.W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure with Extremely High 2DEG Density Grown on Silicon Substrate”, IEEE Electron Device Letters, 2010, 31, 192-194.
[62] Y. Wang M. Wang. B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique”, IEEE Electron Device Letters, 2013, 34, 1370-1372.
[63] A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, and K. C. Saraswat, “Optimization of the Al2O3/GaSb Interface and a High-Mobility GaSb pMOSFET”, IEEE Transactions on Electron Devices, 2011, 58, 3407-3415.
[64] M. Xu, R. Wang, and P. D. Ye, “GaSb Inversion-Mode PMOSFETs with Atomic-Layer-Deposited Al2O3 as Gate Dielectric”, IEEE Electron Device Letters, 2011, 32, 883-885.
[65] G. K. Slavnova, N. P Luzhnaya, and Z. S. Medvedeva, “New Data on State Diagram of In-Se System”, Zh. Keorg. Khim, 1963, 5, 1199.
[66] O. Nesher, S, Elkind, A. Adin, I. Nevo, A. B. Yaakov, S. Raichshtain, A. B. Marhasec, A. Magner, M. Katz, T. Markovitz, D. Chen, A. Ganany, J. O. Schlesinger, and Z. Calahorra, “Digital Cooled InSb detector for IR detection”, Infrared Technology and Application XXXIX, 2003, 5074.
[67] R. Rawe, A. Timlin, M. Dacis, J. W. Devitt, and M. Greiner, “Advanced Large-Format InSb IR FPA maturation at CMC electronics”, Infrared Technology and Application XXX, 2004, 5406.
[68] I. Kimukin, N. Biyikli, T. Kartalglu, O. Aytur, and E. Ozbay, “High-Speed InSb Phorodetectors on GaAs for Mid-IR Applications”, IEEE Journal od Selected Topics in Quantum Electronics, 2004, 10, 766-770.
[69] T. Ashley, T. M Burke, M. T. Emeny, N. T. Gordon, D. J. Hall, D. J. Lees, J. C. Little, and D. Milner, “Epitaxial InSb for Elevated Temperature Operation of Large IR Focal Plane Arrays”, Infrared Technology and Application XXXIX, 2003, 5074, 95-102.
[70] R. Rawe Jr., C. Martin, M Garter, D. Endres, B. Fisher, M. Davis, J. Devitt, and M. Greiner, “Novel High Fill-Factor, Small Pitch, Reticulated InSb IR FPA Design”, Infrared Technology and Application XXXI, 5783, 899-906.
[71] H. Chen, X. Sun, K. W. C. Lai, M. Meyyappan, and N. Xi, “Infrared Detection Using an InSb Nanowire”, IEEE Nanotechnology Materials and Devices Conference, 2009, 212-216.
[72] W. S. Chan, and J. T. Wan, “Auger Analysis of InSb IR Detector Arrays”, Journal of Vacuum Science and Technology, 1977, 14, 718-722.
[73] V. K. Malyutenko, S. S. Bolgov, and O. Y. Malyutenko, “Two-Dimensional InSb Array of IR Emitters with Alternating Contrast”, Infrared Physics and Technology, 2003, 44, 11-15.
[74] A. T. Vogel1, J. d. Boor, M. Becker, J. V. Wittemann, S. L. Mensah, P. Werner and V. Schmidt, “Ag-assisted CBE Growth of Ordered InSb Nanowire Arrays”, Nanotechnology, 2011, 22, 015605.
[75] D. Gu and S. K. Dey, “Effective Work Function of Pt, Pd, and Re on Atomic Layer deposited HfO2”, Applied Physics Letters, 2006, 89, 082907.
[76] Rita Magri, Alex Zunger, and H. Kroemer, “Evolution of the Band-Gap and Band-Edge Energies of the Lattice-Matched GaInAsSb/GaSb and GaInAsSb/InAs Alloys as a Function of Composition”, Journal of Applied Physics, 2005, 98, 043701.
[77] S. H. Chen, C. C. Chen, and C. G. Chao, “Novel Morphology and Solidification Behavior of Eutectic Bismuth–Tin(Bi–Sn) Nanowires”, Journal of Alloys and Compounds, 2009, 481, 270-273.
[78] J. S. Lannin, “Raman Scattering Properties of Amorphous As and Sb”, Phys. Rev. B, 1977, 15, 3863.
[79] W. Huang, H. L. Gan, H. Yang, N. Zhou, R. Wnag, W. Wu, H. Li, Y. Ma, H. Zeng, and T. Zhai, “Controlled Synthesis of Ultrathin 2D β-In2Se3 with Broadband Photoresponse by Chemical Vapor Deposition”, Advanced Functional Materials, 2017, 27, 1702448.
[80] J. Lu, A. Wei, Y. Zhao, L. Tao, Y. Yang, Z. Zheng, H. Wang, D. Luo, J. Liu, L. Tao, H. Li, J. Li, and J. B. Xu, “Graphene/In2S3 van der Waals Heterostructure for Ultrasensitive Photodetection”, ACS Photonics, 2018, 12, 4912-4919.
[81] J. Lu, Z. Zheng, J. Yao, W. Gao, Y. Zhao, Y. Xiao, and J. Li, “2D In2S3 Nanoflake Coupled wirh Graphene Toward High-Sensitivity and Fast-Response Bulk-Silicon Schottky Photodetector”, Small, 2019, 15, 1904912.
[82] M. Wang, F. Cao, L. Meng, W. Tian, and L. Li, “High-Performance Flexible Self-Powered Photodetector Based on Perovskite and Low-Temperature Processed In2S3 Nanoflake Film”, Advanced Materials Interfaces, 2018, 6, 1801526.
[83] H. Cansizoglu, M. F. Cansizoglu, F. Wantanabe, and T. Karabacak, “Enhanced Photocurrent and Dynamic Response in Vertically Aligned In2S3/Ag Core/Shell Nanorod Array Photocondutive Devices”, ACS Applied Materials and Interfaces, 2014, 11, 8673-8682.
[84] L. Wang, L. Xia, Y. Wu, and Y. Tian, “Zr-Doped β-In2Se3 Ultrathin Nanoflakes as Photoanodes: Enhanced Visible-Light-Driven Photoelectrochemical Water Splitting”, ACS Sustainable Chemistry and Engineering, 2016, 5, 2606-2614.
[85] X. Xie, and G. Shen, “Single-Crystalline In2Se3 Nanowires-Based Flexible Visible-Light Photodetectors with an Ultra-High Photorespone”, Nanoscle, 2015, 7, 5046-5052.
[86] C. H. Ho, M. H. Lin, Y. P. Wang, and Y. S. Huang, “Synthesis of In2S3 Ga2S3 Crystals for Oxygen Sensing and UV Photodetection”, Sensors and Acruator A: Physical, 245, 119-126.
[87] N. Zhou, L. Gan, R. Yang, F. Wang, L. Ki, Y. Chen, D. Li, and T. Zhai, “Nanolayered Two-Dimensional Defective, Semiconductor γ-Ga2S3 Toward Broadband Photodetection”, ACS Nano, 2019, 6, 6297-6307.
[88] C. Carlone, S. Jandl, and H. R. Shanks, “Optical phonons and Crystalline Symmetry of InSe”, Physica Status Solidi (b), 1981, 103, 123-130.
[89] O. Lang, C. Pettenkofer, J. F. Sánchez-Royo, A. Segura, A. Klein and W. Jaegermann, “Thin Film Growth and Band Lineup of In2O3 on The Layered Semiconductor InSe”, Journal of Applied Physics, 1999, 86, 5687-5691.
[90] W. Huang, L. Gan, H. Yang, N. Zhou, R. Wang, W. Wu, H. Li, Y. Ma, H. Zeng, and T. Zhai, “Controlled Synthesis of Ultrathin 2D β- In2S3 with Broadband Photoresponse by Chemical Vapor Deposition”, Adv. Funct. Mater. 2017, 27, 1702448.
[91] S. Hao, S. Yan, Y. Wang, T. Xu, H. Zhang, X. Cong, L. Li, X. Liu, T. Cao, A. Gao, L. Zhang, L. Jia, M. Long, W. Hu, X. Wang, P. Tan, L. Sun, X. Cui, S. J. Liang, and F. Miao, “Edge-Epitaxial Growth of InSe Nanowires Toward High-Performance Photodetectors”, Small, 2020, 16, 1905902.
[92] Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, and H. Peng, “Epitaxy and Photoresponse of Two-Dimensional GaSe Crystals on Flexible Transparent Mica Sheets”, ACS Nano 2014, 8, 1485-1490.
[93] R. B. J. Gedrim, M. Shanmugam, N. Jain, C. A. Durcan, M. T. Murphy, T. M. Murray, R. J. Matyi, R. L. Moore, II, and B. Yu, “Extraordinary Photoresponse in Two-Dimensional In2Se3 Nanosheets”, ACS Nano, 2014, 8, 514-521

無法下載圖示 全文公開日期 2025/08/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE