簡易檢索 / 詳目顯示

研究生: 林俐齊
Li-Chi Lin
論文名稱: 建立一低成本且有效之生物檢測鎘金屬技術
Developing an inexpensive and effective cadmium bioassay
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 蔡伸隆
Shen-Long Tsai
李振綱
Cheng-Kang Lee
吳宛儒
Wan-Ru Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: 鎘離子結合蛋白β-葡萄糖苷酶
外文關鍵詞: CadR, p-NPG, BGL_
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近一世紀工業快速發展,工廠林立,致使環境的污染日益嚴重,而重金屬所造成之汙染危害即為一重要議題。其中重金屬鎘,屬顯著危害人體健康排行第七的有毒物質,鎘中毒者嚴重會引發軟骨症或自發性骨折症,即為痛痛病。自民國71年在桃園縣爆發鎘米事件起,鎘汙染事件一連串的引爆,近幾年在彰化地區仍發現主要灌溉渠道受到電鍍業者排放重金屬廢水汙染;美國環境保護署允許飲用水僅能含有5ppb以內的鎘,一天則不可攝取超過0.1微克的鎘,台灣面對如此嚴峻的生態環境,檢驗鎘含量的方式只有火焰式原子吸收光譜儀、感應偶和電漿原子發射光譜儀等,皆屬於昂貴的精密儀器,檢驗的前置處理步驟複雜,整體的檢驗時間冗長,且僅有部分機構單位擁有這些檢驗儀器,對於農工商業及一般家庭民眾,想要進行產品或環境的鎘汙染含量檢驗,實屬繁複且所費不貲。因此本研究擬以特定細菌對重金屬抵抗機制中的鎘離子結合蛋白CadR,利用其結合鎘離子而釋放調節DNA的特性,在調節DNA序列上連接將p-Nitrophenyl-β-D- glucopyranoside (p-NPG )分解為葡萄糖的β-葡萄糖苷酶( β-glucosidases , BGL ),得到一個蛋白質鎘含量檢驗機制;當此機制檢驗鎘含量的同時,會釋放出連有β-葡萄糖苷酶的DNA序列,再加入p-Nitrophenyl-β-D- glucopyranoside (p-NPG )反應,產生與鎘含量成一定比例的葡萄糖及p-nitrophenol,故只需要以一般家庭常備的血糖機,就可簡易且快速檢測所含有的鎘含量,而p-nitrophenol呈黃色,也可藉由顏色的變化,透過分光光度計來推算鎘含量的濃度。 


    Over the past century, the industry is rapidly develop and factories are everywhere. This development result in increasingly serious environmental pollution, and pollution hazards caused by heavy metals is an important issue. Heavy metal, cadmium, is a significant harm to human health, which ranked as seventh toxic substances. Cadmium poisoning will lead to seriously cartilage or spontaneous fracture, which called itai-itai disease. Since the beginning of cadmium pollution in Taoyuan County in 1982, a series of cadmium pollution incident had detonated. In recent years, we still found that some of the main irrigation channels in Changhua were polluted by the heavy metal wastewater pollution from electroplating industry. The US Environmental Protection Agency allows drinking water to contain only 5 ppb of cadmium, and people can’t intake more than 0.1 micrograms of cadmium in one day. Taiwan faces such a severe ecological environment, but the way to detect the content of cadmium only have flame atomic absorption spectrometry, inductance and plasma atomic emission spectrometry. These instruments are very expensive and the inspection of the pre-processing steps are complex, as well as the overall inspection time is lengthy, besides, only some of the institutional units have these testing equipments. It is complicated and expensive for agriculture, industry, commerce and the general family of people, who want to carry out the product or the environment of cadmium pollution test. Therefore, this study intends to use the cadmium binding protein CadR which has the mechanism of heavy metal resistance in specific bacteria. Taking advantages of CadR, which can bind to cadmium ions and release the regulatory DNA at the same time, we linked β-glucosidases(BGL), which can decompose p-Nitrophenyl-β-D-glucopyranoside(p-NPG) into glucose and p-nitrophenol, to the end regulatory DNA. Thus, the concentration of cadmium is relative to the amount of glucose and p-nitrophenol released by BGL so that we obtain a cadmium bioassay. Herein, we can easily and quickly detect the content of cadmium using the general family standing blood glucose machines. Moreover, p-nitrophenol is yellow, so we also can calculate the concentration of cadmium that is corresponded the color changes by the spectrophotometers. 

    第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究內容 3 第二章 文獻回顧 4 2.1鎘金屬之毒性危害 4 2.2鎘金屬之檢測方法 5 2.2.1感應耦合電漿原子發射光譜法( ICP-AES ) 5 2.2.2感應耦合電漿質譜法( ICP-MS ) 6 2.2.3火焰式原子吸收光譜法(FLAAS) 6 2.2.4石墨爐式原子吸收光譜法( GFAAS ) 7 2.3鎘離子結合蛋白CadR 7 2.4纖維素結合蛋白( cellulose binding domains, CBD ) 9 2.5汞離子結合蛋白MerR 10 2.6 β-葡萄糖苷酶( β-glucosidases, BGL ) 11 2.7 p-Nitrophenyl-β-D- glucopyranoside (p-NPG ) 12 2.8 血糖機 ( Blood glucose meters ) 13

    1. 行政院環保署土壤及地下水污染整治基金管理會, 全國農地重金屬污染潛勢調查成果報告(2015)
    2. Agency for Toxic Substances and Disease Registry, The Priority List of Hazardous Substances (2015)
    3. Morrow H., Cadmium and Cadmium Alloys. Kirk-Othmer Encyclopedia of Chemical Technology, 2010. 3: p.31–36.
    4. Y. Shiraishi, Cytogenetic studies in 12 patients with itai-itai disease. Humangenetik, 1975. 27(1): p. 31–44.
    5. M. Kasuya, H. Teranishi, K. Aoshima, T. Katoh, H. Hoiguchi,
    Y. Morikawa, M. Nishijo and K. Iwata, Water pollution by cadmium and the onset of itai-itai disease. Water Sci. Technol., 1992. 26: p. 149–156.
    6. Steven,M.P.S.,Eric,N.D.,Daniel,L.M.,Michael,C.H.,KY,A.W.,N.,D., Comparison of AAs,ICP-AES,PSA,and XRF in determining lead and cadmium in soil. Environ.Sci.Technol, 1996. 30(1): p. 204–213.
    7. Townsend, A. T.; Miller, K. A.; Mclean, S.; Aldous, S., The determination of copper, zinc, cadmium and lead in urine by high resolution inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1998. 13: p. 1213–1219.
    8. Teslima Dasbası, Serife Saçmacı, Ahmet Ülgen, Senol Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry. Food Chemistry, 2015. 174: p. 591–596.
    9. 行政院農業委員會, 農作物重金屬污染監測與管制措施(2006)
    10. H. Horiguchi, H. Teranishi, K. Niiya, K. Aoshima, T. Katoh,
    N. Sakuragawa and M. Kasuya, Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Archives of Toxicology, 1994. 68: p. 632–636.
    11. A. Z. Pollack, S. Ranasinghe, L. A. Sjaarda and S. L. Mumford, Cadmium and Reproductive Health in Women: A Systematic Review of the Epidemiologic Evidence. Curr. Environ. Health Rep., 2014. 1: p. 172–184.
    12. Silver S, Phung LT., Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol, 1996. 50: p. 753-89.
    13. Nigel L. Brown, Jivko V. Stoyanov, Stephen P. Kidd, Jon L. Hobman, The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 2003. 27: p. 145-163.
    14. Lee S.-W., Glickmann E., Cooksey D.A., Chromosomal Locus for Cadmium Resistance in Pseudomonas putida Consisting of a Cadmium-Transporting ATPase and a MerR Family Response Regulator. Applied and Environmental Microbiology, 2001. 67(4): p. 1437-1444.
    15. Jeng W.-Y., Wang N.-C., Lin M.-H., Lin C.-T., Liaw Y.-C., Chang W.-J., Liu C.-I., Liang P.-H., Wang A.H.-J., Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 2011. 173(1): p. 46-56.
    16. Holleman, A. F.; Wiberg, E.; Wiberg, Nils, Cadmium. Lehrbuch der Anorganischen Chemie, 91–100 (in German), Walter de Gruyter, 1985. p. 1056–1057.
    17. Morrow H., Cadmium and Cadmium Alloys. Kirk-Othmer Encyclopedia of Chemical Technology, 2010. 3: p.31–36.
    18. Smith C.J.E.; Higgs M.S.; Baldwin K.R., Advances to Protective Coatings and their Application to Ageing Aircraft. RTO MP-25, 1999. 15: p. 1-8.
    19. Buxbaum, Gunter; Pfaff, Gerhard, Industrial inorganic pigments. 2005. p. 121–123.
    20. Scoullos, Michael J.; Vonkeman, Gerrit H.; Thornton, Iain; Makuch, Zen, Mercury, Cadmium, Lead: Handbook for Sustainable Heavy Metals Policy and Regulation. 2001.
    21. Cullen, Jay T.; Maldonado, Maria T., Chapter 2: Biogeochemistry of Cadmium and its Release to the Environment. Cadmium: From Toxicology to Essentiality, 2013. p. 31–62.
    22. Johri N., Jacquillet G, Unwin R., Heavy metal poisoning: the effects of cadmium on the kidney. Biometals, 2010. 23(5): p. 783-792.
    23. 福利部食品藥物管理署
    24. 行政院環境保護署 地下水監測法令依據 飲用水水源水質標準
    25. 行政院環境保護署 地下水監測法令依據 地下水污染管制標準
    26. Steven,M.P.S.,Eric,N.D.,Daniel,L.M.,Michael,C.H.,KY,A.W.,N.,D., Comparison of AAs,ICP-AES,PSA,and XRF in determining lead and cadmium in soil. Environ. Sci. Technol., 1996. 30(1): p. 204–213.
    27. Townsend, A. T.; Miller, K. A.; Mclean, S.; Aldous, S., The determination of copper, zinc, cadmium and lead in urine by high resolution inductively coupled plasma mass spectrometry. J. Analys. Atom. Spect., 1998. 13: p. 1213-1219.
    28. Teslima Dasbası, Serife Saçmacı, Ahmet Ülgen, Senol Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry. Food Chemistry, 2015. 174: p. 591–596.
    29. Lozak A, Soltyk K, Ostapczuk P, Fijalek Z., Determination of selected trace elements in herbs and their infusions. Sci Total Environ, 2002. 289: p. 33-40.
    30. Ning PB, Gong CM, Zhang YM, Guo KK, Bai J., Lead, cadmium, arsenic, mercury and copper levels in Chinese Yunnan Pu’er tea. Food Additives and Contaminants: Part B: Surveillance, 2011. 4: p. 28-33.
    31. K. R. Brocklehurst, S. J. Megit and A. P. Morby, Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem. Biophys. Res. Commun., 2003. 308: p. 234–239.
    32. Q. Liu, F. Yuan, Y. Liang and Z. Li, Cadmium adsorption by E. coli with surface
    displayed CadR. RSC Adv., 2015. 5: p. 16089–16092.
    33. C. H. Wu, D. Le, A. Mulchandani and W. Chen, Optimization of a Whole-Cell Cadmium Sensor with a Toggle Gene Circuit. Biotechnol. Prog., 2009. 25: p. 898–903.
    34. H. C. Tao, Z. W. Peng, P. S. Li, T. A. Yu and J. Su, Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Biotechnol. Lett., 2013. 35: p. 1253–1258.
    35. Shoseyov O, S.Z., Levy I, Carbohydrate Binding Modules: Biochemical Properties and Novel Applications. Microbiol. Mol. Bio Rev., 2006. 70: p. 283-295.
    36. Boraston AB, B.D., Gilbert HJ, Davies GJ, Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J., 2004. 382: p. 768-781.
    37. Wang AA, M.A., Chen W, Whole-cell immobilization using cell surface-exposed cellulose-binding domain. Biotechnol. Prog., 2001. 17: p. 407-411.
    38. Wang, A.A., A. Mulchandani, and W. Chen, Specific Adhesion to Cellulose and Hydrolysis of Organophosphate Nerve Agents by a Genetically Engineered Escherichia coli Strain with a Surface-Expressed Cellulose-Binding Domain and Organophosphorus Hydrolase. Appl Environ Microbiol, 2002. 68(4): p. 1684-1689.
    39. Shewchuk, L.M., Verdine, G.L., Nash, H. and Walsh, C.T., Mutagenesis of the cysteines in the metalloregulatory protein MerRindicates that a metal-bridged dimer activates transcription. Biochemistry, 1989. 28: p. 6140-6145.
    40. Barrineau, P., Gilbert, P., Jackson, W.J., Jones, C.S., Summers, A.O.and Wisdom, S., The DNA sequence of the mercury resistanceoperon of the IncFII plasmid NR1. J. Mol. Appl. Genet., 1984. 2(6): p. 601-19.
    41. Stanisich, V.A., Bennett, P.M. and Richmond, M.H., Charac-terisation of a translocation unit encoding resistance to mercuric ionsthat occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J. Bacteriol, 1977. 129(3): p. 1227–1233.
    42. Nigel L. Brown, Jivko V. Stoyanov, Stephen P. Kidd, Jon L. Hobman, The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 2003. 27: p. 145-163.
    43. Kretsinger, Robert H., Uversky, Vladimir N., Permyakov, Encyclopedia of Metalloproteins. 2013. p. 209-217.
    44. Wen-Yih Jeng, Nai-Chen Wang, Man-Hua Lin, Cheng-Tse Lin, Yen-Chywan Liaw, Wei-Jung Chang, Chia-I Liu, Po-Huang Liang, Andrew H.-J. Wang, Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 2011. 173: p. 46–56.
    45. 潘利華,羅建平 , β - 葡萄糖苷酶的研究及應用進展. 食品科学, 2006. Vol. 27, No. 12 803.
    46. James R. Ketudat Cairns, Asim Esen, β-Glucosidases. Cell. Mol. Life Sci., 2010. 67: p. 3389–3405.
    47. Gruno M, Väljamäe P, Pettersson G, Gunnar Johansson, Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnology and Bioengineering, 2004. 86: p. 503-511.
    48. Holtzapple M, Cognata M, Shu Y. Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnology and Bioengineering, 1990. 36: p. 275-287.
    49. Andrić P, Meyer A S, A Jensen P, et al., Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnology Advances, 2010. 28: p. 308-324.
    50. Pei, J., Pang, Q., Zhao, L., Fan, S., Shi, H., Thermoanaerobacterium thermosaccharolyticum beta-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels, 2012. 5: p. 31-40.
    51. Harnpicharnchai, P., Champreda, V., Sornlake, W., Eurwilaichitr, L., A thermotolerant-glucosidase isolated from an endophytic fungi Periconia sp., with a possible use for biomass conversion to sugars. Protein Expression and Purification, 2009. 67: p. 61–69.
    52. Jeng W.-Y., Wang N.-C., Lin M.-H., Lin C.-T., Liaw Y.-C., Chang W.-J., Liu C.-I., Liang P.-H., Wang A.H.-J., Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 2011. 173(1): p. 46-56.
    53. Alexander J. Ninfa, David P. Ballou, Marilee Benore, Fundamental Laboratory Approached for Biochemistry and Biotechnology. 2010. p. 153-243.
    54. Ksenia Tonyushkina, James H. Nichols, Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results. J. Diabetes Sci. Technol., 2009. 3(4): p. 971–980.

    QR CODE