簡易檢索 / 詳目顯示

研究生: 曾致翔
Chih-Hsiang Tseng
論文名稱: CdSeS三元量子點材料的製備與光學性質探討
Preparation and optical properties study of CdSeS ternary composition quantum dots
指導教授: 陳良益
Liang-Yih Chen
口試委員: 鐘宜璋
none
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 117
中文關鍵詞: 硒硫化鎘均相結構非均相結構
外文關鍵詞: CdSeS, homogeneous structure, nonhomogeneous structure
相關次數: 點閱:262下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中主要利用非配位系統中合成硒硫化鎘三元量子點,並藉由組成成份分析、吸收與放射光譜分析建立此三元量子點材料的結構模型。於非配位系統中調變II族元素與VI族元素比例來控制量子點形態時發現:VI族元素過量時,硒硫化鎘量子點在成長一段時間後會產生聚集沉澱並且效率低:而當II族元素過量時可合成出螢光效率高的硒硫化鎘量子點此外,可藉由控制VI族元素組成比例來控制量子點發光位置和螢光量子效率,當VI族元素組成中硫含量增加時,量子點激發光會有藍位移現象,並且螢光量子效率也隨之增加。由此結果可得知:量子點的能隙值除了可藉由粒徑大小來調控之外,亦可藉由量子點組成來達成。此外,在本研究中結合組成成份分析、粒徑分析與吸收光譜分析,以Vegard’s law成功推論所合成的量子點為梯度結構或近核-殼結構,同時討論不同的表面活性劑對量子點電子-電洞復合的影響。經由加入適當的表面活性劑可有效提升硒硫化鎘量子點效率至91%。


    In this study, CdSeS quantum dots (QDs) were synthesized via non-coordinated system. The structural model of CdSeS QDs was established by using composition analysis, absorption spectroscopy and emission spectroscopy. When the molar ratio of II group element and VI group element was employed to control the structure of CdSeS QDs, we found that CdSeS QDs would precipitate easily if VI group element was excess and CdSeS QDs with high photoluminescence quantum yield (PL QY) could be produced if II group element was excess. In addition, the emission wavelength and PL QY could be modulated by controlling the composition ratio of Se and S in the injection stock solution. The emission wavelength of CdSeS QDs shifts to short wavelength and PL QY could also increase with increasing the composition of S. The results demonstrated that the band gap of CdSeS QDs was not only tunable with size, but also with composition of reactant.
    In the study, we also used composition analysis, size distribution and absorption spectroscopy to speculate the structural model of CdSeS QDs by gradient or core-shell model successfully. Additionally, the influence of different surfactants on the recombination of electron-hole pairs inside the CdSeS QDs was also be discussed. When suitable surfactant was chose to passivate the surfaces of CdSeS QDs, PL QY could increase to 91%.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章、緒論 1 1-1 奈米晶體簡介 1 1-2 奈米晶體的特性 3 1-3 奈米粒子之應用 6 1-4 硒硫化鎘量子點 7 1-5 實驗動機與目的 8 第二章、理論基礎與文獻回顧 9 2-1 半導體材料分類 9 2-2 半導體奈米晶體之特性 10 2-3 奈米半導體晶體製備方法 12 2-3-1 物理方法製備奈米微粒 12 2-3-2 化學方法製備奈米微粒 13 2-4 Ⅱ-Ⅵ族奈米晶體 16 2-5 螢光原理與量測 18 2-5-1 光致激發螢光原理 18 2-5-2 螢光量子效率量測 20 2-6 奈米晶體組成與結構分析 21 第三章、實驗方法與步驟 23 3-1 實驗流程 23 3-2 實驗藥品 24 3-3 實驗分析儀器 29 3-3-1 紫外光-可見光光譜儀 29 3-3-2 螢光光譜儀 30 3-3-3 X光光電子能譜儀 31 3-3-4 感應耦合電漿原子發射光譜儀 34 3-3-5 X光繞射分析儀 36 3-3-6 場發射穿透式電子顯微鏡 38 3-3-7 載子生命週期光譜儀(Carrier Lifetime ) 39 3-4 實驗步驟與流程 41 3-4-1 非配位法合成硒硫化鎘量子點 41 3-4-2 非配位法合成硒化鎘量子點 43 3-4-3 非配位法合成硫化鎘量子點 44 3-5 材料性質分析 45 3-5-1 螢光量子效率量測 45 3-5-2 穿透式電子顯微鏡分析 46 3-5-3 X光光電子能譜儀 47 3-5-4 X光薄膜繞射儀分析 47 3-5-5 感應耦合電漿原子發射光譜儀 47 3-5-6 載子生命週期分析 48 第四章、結果與討論 49 4-1 調變II族與VI元素比例合成硒硫化鎘量子點性質分析 .49 4-2 調變硫元素合成硒硫化鎘量子點性質分析 53 4-2-1 不同硫元素合成硒硫化鎘量子點之光學性質 53 4-2-2 不同硫元素合成硒硫化鎘量子點晶體結構分析 54 4-2-3 不同硫元素合成硒硫化鎘量子點晶體成份組成分析 55 4-2-4 硒硫化鎘量子點晶體結構模型 56 4-2-5 不同硫元素合成硒硫化鎘量子點於載子生命週期分析 58 4-3 成長時間效應於硒硫化鎘量子點性質分析 80 4-3-1 成長時間效應於硒硫化鎘之光學性質 80 4-3-2 成長時間效應於硒硫化鎘之晶體結構分析 81 4-3-3 成長時間效應於硒硫化鎘量子點晶體成份組成分析 81 4-3-4 成長時間效應於硒硫化鎘之載子生命週期分析 82 4-4 硒化鎘、硒硫化鎘、硫化鎘量子點表面修飾 91 第五章、結論 97 第六章、參考文獻 99

    [1] 王廣厚, 韓民, 物理學進展, 10, 248 (1990)
    [2] Y. Hirai, T. Fukuda, Y. Kobayashi, Sol. Stat. Comm. 62, 637 (1987)
    [3] R. Birringer, H. Gleiter, H. P. Klein, Phys. Lett. 102A, 365 (1984)
    [4] T. Mutschele, R. Kirchheim, Scripta Metall. 21, 135 (1987)
    [5] 張安華, 實用奈米技術, 新文京開發出版社.
    [6] W. C. W. Chan, S. Nie, Science, 281, 2016 (1998).
    [7] H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawandi, J. Am. Chem. Soc. 122, 12142 (2000).
    [8] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature, 370 354 (1994).
    [9] B. O. Dabbousi, O. Onitsuka, M. G. Bawendi, M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995)
    [10] S. Coe, W. K. Woo, M. Bawendi, V. Bulovic, Nature, 420, 800 (2002)
    [11] N. Tessler, V. Medvedev, M. Kases, S. Kan, U. Banin, Science, 295, 1506 (2002)
    [12] 馬遠榮, 奈米科技, 商周出版社 (2003).
    [13] Chem. Tech.化工產業技術知識網, 奈米專覽-奈米結構與特性, http//www.chemtech.com.tw/.
    [14] 莊萬發, 超微粒子理論應用, 復漢出版社 (1995).
    [15] C. M. Mo, L. Zhang, X. Yao, X. Fan, J. Appl. Phys. 76, 5453 (1994)
    [16] C. Kittel, Introduction to Solid State Physics, John Wiley and Sons, Inc, chapter 13 (1976)
    [17] 劉吉平, 奈米科學與技術, 世茂出版社 (2003).
    [18] D. L. Feldein, C. D. Keating, Chem. Soc. Rev. 27, 1 (1998)
    [19] 張立德, 牟季美, 奈米材料和奈米結構, 滄海出版社 (2002)
    [20] N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, Appl. Phys. Lett. 79, 4423 (2001).
    [21] J. Cheon, and J. I. Zink, J. Am. Chem. Soc. 119, 3838 (1997).
    [22] R. Memming, Semiconductor Electrochemistry, 1st ed. Wiley-Vh, 264-274(2001).
    [23] D. R. Vij, N. Singh, Luminescence and Related Properties of Ⅱ-Ⅵ Semiconductor, Novo Science Publishers (1998).
    [24] F. T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Ribud, and P. Stroeve, Langmui, 16, 4049 (2000).
    [25] 羅吉中, 薄膜科技與應用, 金華出版社 (2005).
    [26] W. Tang, and D. C. Cameron, Thin Solid Films, 238, 83 (1994).
    [27] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
    [28] Z. A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001).
    [29] I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, H. Weller, J. Phys. Chem. B, 107, 7454 (2003).
    [30] J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, X. Peng, J. Am. Chem. Soc. 125, 12567 (2003)
    [31] E. Jang, S. Jun, L. Pu, Chem. Commun. 2964 (2003)
    [32] L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulovic, Nano lett., 8, 4513 (2008).
    [33] H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee, D. Y. Jeon, Adv. Mater. 20 2696 (2008).
    [34] H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nature Biotechnology, 25, 1160 (2007).
    [35] P. V. Kamat, J. Phys. Chem. C, 10.1021/jp806791s.
    [36] 謝嘉民, 賴一凡, 林永昌, 枋志堯, 奈米通訊, 12, 28.
    [37] M. A. Herman, D. Bimberg, J. Christen, J. Appl. Phys. 70, R1 (1991).
    [38] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum, New York (1999).
    [39] S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder, and V. I. Klimov, J. Am. Chem. Soc. 129, 11708 (2007).
    [40] N. Al-Salim, A. G. Young, R. D. Tilly, A. J. McQuillan, J. Xia, Chem. Mater. 19, 5185 (2007).
    [41] R. E. Bailey, S. Nie, J. Am. Chem. Soc. 125, 7100 (2003)
    [42] X. Zhoug, Z. Zhang, S. Liu, M. Han, W. Knoll, J. Phys. Chem. B 108, 15552 (2004).
    [43] 陳俊龍, 工業材料, 106, 69 (1995).
    [44] S.Tanuma, C. J. Powell, and D. R. Penn Surf. Interface Anal. 21, 165 (1993).
    [45] 藍啟仁,儀器總覽;行政院國家科學委員會精密儀器發展中心:台北市,民87。
    [46] http://ce.sysu.edu.cn/Echemi/acbx/Content/part2/chapter5/content_b_05_03.html
    [47] A. R. West, Basic Solid State Chemistry, John Wiley & Sons, Singapore (1991).
    [48] H. Liu, J. S. Owen, A. P. Alivisatos, J. Am. Chem. Soc. 129, 305 (2007)
    [49] L. Qu, X. Peng, J. Am. Chem. Soc. 124, 2049 (2002)
    [50] L.A. Swafford, L.A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, S. J. Rosenthal, J. Am. Chem. Soc. 128, 12299 (2006)
    [51] X. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Nano Lett. 3, 1103 (2003)
    [52] V. Biju, R. Karemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba, M. Ishikawa, J. Phys. Chem. C, 111, 7924 (2007).

    QR CODE