研究生: |
林世壇 Shi-Tan Lin |
---|---|
論文名稱: |
利用氧電漿處理硒化銦製作同質pn二極體之光電導特性研究 Study on photoconductivity of InSe pn diode fabricated via oxygen plasma treatment |
指導教授: |
李奎毅
Kuei-Yi Lee |
口試委員: |
李奎毅
Kuei-Yi Lee 何清華 Ching-Hwa Ho 陳瑞山 Ruei-San Chen 林保宏 Pao-hung Lin |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 半導體 、硒化銦 、電漿處理 、pn二極體 、光感測器 |
外文關鍵詞: | semiconductor, InSe, plasma treatment, pn diode, photodetector |
相關次數: | 點閱:475 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用化學氣相傳導法成長硒化銦塊材,再以機械剝離法取得硒化銦薄片,先利用電荷中性點確認本質硒化銦為n型,再以掃描式電子顯微鏡觀察樣品表面樣貌,接著用氧電漿進行氧化處理以改變其半導體特性,分別用X射線光電子能譜儀、X射線能量散佈能譜儀與電荷中性點確認氧化效果,結果發現硒化銦在經過氧電漿處理後,可從n型轉變為p型,因此我們利用絕緣遮罩定義電漿處理的區域,以進行遮半氧電漿處理,製作出同質硒化銦pn接面二極體,並應用於半波整流電路中,量測發現硒化銦二極體在頻率1.5k Hz仍具有良好的整流功效。最後我們將硒化銦製作成三種光感測元件,分別為:本質硒化銦,經過氧電漿處理的外質硒化銦與遮半氧電漿處理的硒化銦二極體,以雷射波長405,532,633,808 nm進行光電流量測,雷射功率從0.1 mW到30 mW,並計算光電導率與光響應度,量測結果發現三種光感測元件都在808 nm得到最好的光電導率與光響應度,除此之外,我們也發現硒化銦二極體在光電導率與光響應度上均較本質與外質硒化銦佳,這是因為二極體之空乏區能夠抑制暗電流,光激發出的電子與電洞都能被內建電場掃出空乏區,總合成光電流,使得光電流增加。綜合本實驗所得結果,遮半氧電漿處理技術對於硒化銦的光電性能有明顯的改善,為相關領域的研究提供了新的思路和方法。
In this study, we used chemical vapor transport to synthesize bulk indium selenide (InSe) and then mechanically exfoliated to obtain InSe thin flakes. The material was characterized as n-type using the charge neutrality point (CNP) method and scanning electron microscopy (SEM) was used to observe the sample surface morphology. Oxygen plasma doping was performed to modify the semiconductor properties, and the doping effect was confirmed using X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), Raman spectrometry, and CNP measurements. Results showed that InSe could be transformed from n-type to p-type with oxygen plasma treatment. Therefore, we defined the treatment region using an insulating mask to fabricate homojunction InSe p-n diodes, which were then applied in a half-wave rectification circuit. Measurements revealed good rectification performance of the InSe diode at a frequency of 1.5 kHz. Finally, we fabricated three types of photodetectors using intrinsic InSe, oxygen plasma-doped extrinsic InSe, and InSe p-n diodes. The devices were tested with laser wavelengths of 405, 532, 633, and 808 nm, and the photoconductivity and photoresponsivity were calculated at laser powers ranging from 0.1 mW to 30 mW. Results showed that all three photodetectors exhibited the best photocurrent at 808 nm. Moreover, the InSe diode had better photoconductivity and photoresponsivity than intrinsic and extrinsic InSe, which was due to the depletion region of the diode suppressing dark current and the electrons and holes excited by light being swept by the built-in electric field to the depletion region to generate photocurrent.
[1] Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
[2] H. Benisty, S. Olivier, M. Rattier, and C. Weisbuch, “Applications of two-dimensional photonic crystals to semiconductor optoelectronic devices,” Photonic Crystals and Light Localization in the 21st Century, pp. 117-128, 2001.
[3] C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, vol. 48, no. 8, pp. 2127-2150, 2010.
[4] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, p. 109, 2009.
[5] G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology, vol. 23, no. 11, p. 112001, 2012.
[6] J. Phiri, P. Gane, and T. C. Maloney, “General overview of graphene: production, properties and application in polymer composites,” Materials Science and Engineering: B, vol. 215, pp. 9-28, 2017.
[7] X. Xu, C. Liu, Z. Sun, T. Cao, Z. Zhang, E. Wang, Z. Liu, and K. Liu, “Interfacial engineering in graphene bandgap,” Chemical Society Reviews, vol. 47, no. 9, pp. 3059-3099, 2018.
[8] M. Monsefi and D.-H. Kuo, “A p→ n transition for Sn-doped Cu (In, Ga) Se2 bulk materials,” Journal of Solid State Chemistry, vol. 204, pp. 108-112, 2013.
[9] H. Shi, D. Wang, Y. Xiao, and L. D. Zhao, “Dynamic carrier transports and low thermal conductivity in n‐type layered InSe thermoelectrics,” Aggregate, vol. 2, no. 4, p. e92, 2021.
[10] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, and R. Vajtai, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano, vol. 8, no. 2, pp. 1263-1272, 2014.
[11] T. Hu, J. Zhou, and J. Dong, “Strain induced new phase and indirect–direct band gap transition of monolayer InSe,” Physical Chemistry Chemical Physics, vol. 19, no. 32, pp. 21722-21728, 2017.
[12] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, M.-K. Li, C.-A. Tsai, W.-H. Wang, C.-H. Ho, C.-W. Chen, and P.-W. Chiu, “High-mobility InSe transistors: the role of surface oxides,” ACS Nano, vol. 11, no. 7, pp. 7362-7370, 2017.
[13] E. G. Marin, D. Marian, G. Iannaccone, and G. Fiori, “First-principles simulations of FETs based on two-dimensional InSe,” IEEE Electron Device Letters, vol. 39, no. 4, pp. 626-629, 2018.
[14] C. Song, S. Huang, C. Wang, J. Luo, and H. Yan, “The optical properties of few-layer InSe,” Journal of Applied Physics, vol. 128, no. 6, p. 060901, 2020.
[15] M. Teena, A. Kunjomana, K. Ramesh, R. Venkatesh, and N. Naresh, “Architecture of monophase InSe thin film structures for solar cell applications,” Solar Energy Materials and Solar Cells, vol. 166, pp. 190-196, 2017.
[16] S. R. Tamalampudi, Y.-Y. Lu, R. K. U, R. Sankar, C.-D. Liao, C.-H. Cheng, F. C. Chou, and Y.-T. Chen, “High performance and bendable few-layered InSe photodetectors with broad spectral response,” Nano Letters, vol. 14, no. 5, pp. 2800-2806, 2014.
[17] P. Li, K. Yuan, D.-Y. Lin, T. Wang, W. Du, Z. Wei, K. Watanabe, T. Taniguchi, Y. Ye, and L. Dai, “p-MoS2/n-InSe van der Waals heterojunctions and their applications in all-2D optoelectronic devices,” RSC Advances, vol. 9, no. 60, pp. 35039-35044, 2019.
[18] Z. Chen, J. Biscaras, and A. Shukla, “A high performance graphene/few-layer InSe photo-detector,” Nanoscale, vol. 7, no. 14, pp. 5981-5986, 2015.
[19] M. Li, F. S. Yang, Y. C. Hsiao, C. Y. Lin, H. M. Wu, S. H. Yang, H. R. Li, C. H. Lien, C. H. Ho, and H. J. Liu, “Low‐voltage operational, low‐power consuming, and high sensitive tactile switch based on 2D layered InSe tribotronics,” Advanced Functional Materials, vol. 29, no. 19, p. 1809119, 2019.
[20] A. Segura, A. Chevy, J. Guesdon, and J. Besson, “Photovoltaic efficiency of InSe solar cells,” Solar Energy Materials, vol. 2, no. 2, pp. 159-165, 1979.
[21] D. Bonacchi, G. Rizzi, U. Bardi, and A. Scrivani, “Chemical stripping of ceramic films of titanium aluminum nitride from hard metal substrates,” Surface and Coatings Technology, vol. 165, no. 1, pp. 35-39, 2003.
[22] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, and R. J. Smith, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science, vol. 331, no. 6017, pp. 568-571, 2011.
[23] J. Xie, Y. Wang, D. Zhang, C. Liang, W. Liu, Y. Chong, X. Yin, Y. Zhang, D. Gui, and L. Chen, “Photo-exfoliation of a highly photo-responsive two-dimensional metal–organic framework,” Chemical Communications, vol. 55, no. 78, pp. 11715-11718, 2019.
[24] M. Acik and Y. J. Chabal, “A review on thermal exfoliation of graphene oxide,” Journal of Materials Science Research, vol. 2, no. 1, p. 101, 2013.
[25] Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng, H.-L. Luo, Y.-Q. Cai, G.-D. Liu, W.-J. Zhao, and Z. Zhou, “Universal mechanical exfoliation of large-area 2D crystals,” Nature Communications, vol. 11, no. 1, p. 2453, 2020.
[26] F. Liu, “Mechanical exfoliation of large area 2D materials from vdW crystals,” Progress in Surface Science, vol. 96, no. 2, p. 100626, 2021.
[27] B. J. Kim, B. J. Jeong, S. Oh, S. Chae, K. H. Choi, T. Nasir, S. H. Lee, K.-W. Kim, H. K. Lim, and I. J. Choi, “Mechanical exfoliation and electrical characterization of a one-dimensional Nb2Se9 atomic crystal,” RSC Advances, vol. 8, no. 66, pp. 37724-37728, 2018.
[28] H. C. Chang, C. L. Tu, K. I. Lin, J. Pu, T. Takenobu, C. N. Hsiao, and C. H. Chen, “Synthesis of large‐area InSe monolayers by chemical vapor deposition,” Small, vol. 14, no. 39, p. 1802351, 2018.
[29] J. Zhou, J. Shi, Q. Zeng, Y. Chen, L. Niu, F. Liu, T. Yu, K. Suenaga, X. Liu, and J. Lin, “InSe monolayer: synthesis, structure and ultra-high second-harmonic generation,” 2D Materials, vol. 5, no. 2, p. 025019, 2018.
[30] Y. Igasaki and T. Fujiwara, “The preparation of highly oriented InSe films by electrodeposition,” Journal of Crystal Growth, vol. 158, no. 3, pp. 268-275, 1996.
[31] Z. Kudrynskyi, V. Khomyak, V. Katerynchuk, M. Kovalyuk, V. Netyaga, and B. Kushnir, “Fabrication and characterization of photosensitive n-ZnO/p-InSe heterojunctions,” Thin Solid Films, vol. 582, pp. 253-257, 2015.
[32] W. Shockley, “The theory of p‐n junctions in semiconductors and p‐n junction transistors,” Bell System Technical Journal, vol. 28, no. 3, pp. 435-489, 1949.
[33] D. Neamen, “Semiconductor physics & devices: basic principles. New York, McGaw-Hill,” 2011.
[34] L. Duan, H. Yi, C. Xu, M. B. Upama, M. A. Mahmud, D. Wang, F. H. Shabab, and A. Uddin, “Relationship between the diode ideality factor and the carrier recombination resistance in organic solar cells,” IEEE Journal of Photovoltaics, vol. 8, no. 6, pp. 1701-1709, 2018.
[35] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Applied Physics Letters, vol. 94, no. 8, p. 081113, 2009.
[36] Y. Jin, D. H. Keum, S. J. An, J. Kim, H. S. Lee, and Y. H. Lee, “A van der Waals homojunction: ideal p–n diode behavior in MoSe2,” Advanced Materials, vol. 27, no. 37, pp. 5534-5540, 2015.
[37] J. W. Parks Jr, K. F. Brennan, and A. W. Smith, “Two-dimensional model of photon recycling in direct gap semiconductor devices,” Journal of Applied Physics, vol. 82, no. 7, pp. 3493-3498, 1997.
[38] J. Zheng and H.-S. Kwok, “Temperature dependence of the optical properties of semiconductor microcrystals,” Journal of the Optical Society of America B, vol. 9, no. 11, pp. 2047-2053, 1992.
[39] S. Donati, “Photodetectors: devices, circuits, and applications,” Measurement Science and Technology, vol. 12, no. 5, pp. 653-653, 2001.
[40] L. B. Linford, “Recent developments in the study of the external photoelectric effect,” Reviews of Modern Physics, vol. 5, no. 1, p. 34, 1933.
[41] R. Zitter, “Role of traps in the photoelectromagnetic and photoconductive effects,” Physical Review, vol. 112, no. 3, p. 852, 1958.
[42] D. Yang and D. Ma, “Development of organic semiconductor photodetectors: from mechanism to applications,” Advanced Optical Materials, vol. 7, no. 1, p. 1800522, 2019.
[43] E. Monroy, E. Munoz, F. Sánchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. Munoz, and F. Cussó, “High-performance GaN pn junction photodetectors for solar ultraviolet applications,” Semiconductor Science and Technology, vol. 13, no. 9, p. 1042, 1998.
[44] M. E. Nell and A. M. Barnett, “The spectral pn junction model for tandem solar-cell design,” IEEE Transactions on Electron Devices, vol. 34, no. 2, pp. 257-266, 1987.
[45] W. Luo, Y. Cao, P. Hu, K. Cai, Q. Feng, F. Yan, T. Yan, X. Zhang, and K. Wang, “Gate tuning of high‐performance InSe‐based photodetectors using graphene electrodes,” Advanced Optical Materials, vol. 3, no. 10, pp. 1418-1423, 2015.
[46] F. Yan, L. Zhao, A. Patanè, P. Hu, X. Wei, W. Luo, D. Zhang, Q. Lv, Q. Feng, and C. Shen, “Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures,” Nanotechnology, vol. 28, no. 27, pp. 27LT01, 2017.
[47] Y. Yan, G. Abbas, F. Li, Y. Li, B. Zheng, H. Wang, and F. Liu, “Self‐driven high performance broadband photodetector based on SnSe/InSe van der Waals heterojunction,” Advanced Materials Interfaces, vol. 9, no. 12, p. 2102068, 2022.
[48] J. Xiong, Y. Sun, L. Wu, W. Wang, W. Gao, N. Huo, and J. Li, “High performance self‐driven polarization‐sensitive photodetectors based on GeAs/InSe heterojunction,” Advanced Optical Materials, vol. 9, no. 20, p. 2101017, 2021.
[49] H.-C. Chang, Y.-J. Huang, H.-Y. Chang, W.-J. Su, Y.-T. Shih, Y.-S. Huang, and K.-Y. Lee, “Oxygen adsorption effect on nitrogen-doped graphene electrical properties,” Applied Physics Express, vol. 7, no. 5, p. 055101, 2014.
[50] C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature, vol. 121, no. 3048, pp. 501-502, 1928.
[51] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, “Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration,” Journal of The Royal Society Interface, vol. 13, no. 118, p. 20160182, 2016.
[52] D. A. Neamen, “Microelectronics: circuit analysis and design. New York, McGraw-Hill,” 2007.
[53] Q. Xie, C. Hu, L. Xu, L. Chen, W. Wang, H. Yin, G. Cheng, and X. Ai, “Stability studies of few-layer InSe nanosheets by Raman spectroscopy,” Solid State Communications, vol. 336, p. 114417, 2021.
[54] H. Nan, S. Guo, S. Cai, Z. Chen, A. Zafar, X. Zhang, X. Gu, S. Xiao, and Z. Ni, “Producing air-stable InSe nanosheet through mild oxygen plasma treatment,” Semiconductor Science and Technology, vol. 33, no. 7, p. 074002, 2018.
[55] D. Wei, L. Yao, S. Yang, J. Hu, M. Cao, and C. Hu, “Facile fabrication of InSe nanosheets: towards efficient visible-light-driven H2 production by coupling with P25,” Inorganic Chemistry Frontiers, vol. 2, no. 7, pp. 657-661, 2015.
[56] I. Miyake, T. Tanpo, and C. Tatsuyama, “XPS study on the oxidation of InSe,” Japanese Journal of Applied Physics, vol. 23, no. 2R, p. 172, 1984.
[57] I. Miyake, T. Tanpo, and C. Tatsuyama, “XPS study on the oxidation of InSe,” Japanese journal of applied physics, vol. 23, no. 2R, p. 172, 1984.
[58] X. Wang, H. Nan, W. Dai, Q. Lin, Z. Liu, X. Gu, Z. Ni, and S. Xiao, “Optical studies of the thermal stability of InSe nanosheets,” Applied Surface Science, vol. 467, pp. 860-867, 2019.
[59] Z. Hu, K. Nomoto, B. Song, M. Zhu, M. Qi, M. Pan, X. Gao, V. Protasenko, D. Jena, and H. G. Xing, “Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN pn diodes with avalanche breakdown,” Applied Physics Letters, vol. 107, no. 24, p. 243501, 2015.
[60] P. O. Lauritzen and C. L. Ma, “A simple diode model with reverse recovery,” IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 188-191, 1991.
[61] Z. Zheng, J. Yao, B. Wang, Y. Yang, G. Yang, and J. Li, “Self-assembly high-performance UV–vis–NIR broadband β-In2Se3/Si photodetector array for weak signal detection,” ACS Applied Materials & Interfaces, vol. 9, no. 50, pp. 43830-43837, 2017.
[62] W. Feng, Z. Jin, J. Yuan, J. Zhang, S. Jia, L. Dong, J. Yoon, L. Zhou, R. Vajtai, and J. M. Tour, “A fast and zero-biased photodetector based on GaTe–InSe vertical 2D pn heterojunction,” 2D Materials, vol. 5, no. 2, p. 025008, 2018.
[63] H. Xue, Y. Wang, Y. Dai, W. Kim, H. Jussila, M. Qi, J. Susoma, Z. Ren, Q. Dai, and J. Zhao, “A MoSe2/WSe2 heterojunction‐based photodetector at telecommunication wavelengths,” Advanced Functional Materials, vol. 28, no. 47, p. 1804388, 2018.
[64] S. Zhao, J. Wu, K. Jin, H. Ding, T. Li, C. Wu, N. Pan, and X. Wang, “Highly polarized and fast photoresponse of black phosphorus‐InSe vertical p–n heterojunctions,” Advanced Functional Materials, vol. 28, no. 34, p. 1802011, 2018.
[65] Y. Yan, G. Abbas, F. Li, Y. Li, B. Zheng, H. Wang, and F. Liu, “Self‐driven high performance broadband photodetector based on SnSe/InSe van der Waals heterojunction,” Advanced Materials Interfaces, vol. 9, no. 12, p. 2102068, 2022.